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Abstract

This thesis describes the development of a Fortran computer code which models the interaction between
an incompressible, potential flow and a he:nogeneous, elastic structure. The boundary element technique was
chosenover finite differences and finite elements because of its ability to numerically approximate both the fluid
and structural behavior with a common definition of the fluid/structure boundary.

The ability to accurately model solid and fluid boundaries can be quite important in the fields of
aeroelasticity and structural analysis. The nature of these boundaries is what determines the final solution to
a problem of fluid flow past an elastic body. Of*=n the complexity of defining and tracking the boundary and
its associated boundary conditions has led the user to assumptions of rigid bodies, and therefore rigid
boundaries. Certainly the tasks of defining the domain grids for finite difference and finite element techniques
have not simplified the process.

In the computer code developed for this thesis the fluid and structural governing equations are simulta-
neously solved to determine the pressure about the structure and the corresponding elastic deformations. The
deformations are applied to the original boundary, resulting in a new geometry. This new geometry is used to
recalculate the pressure field about the structure, and the process is iterated until a final steady-state solution
is obtained.

While simplifying assumptions have been made in the execution of this thesis, the general boundary
element techique has the ability to model complex, higher order problems. The initial results obtained during

the course of this work show promise, and follow-on studies are recommended.




SOLUTION OF POTENTIAL FLOW PAST AN ELASTIC BODY

USING THE BOUNDARY ELEMENT TECHNIQUE

This thesis investigates the simultaneous solution of the interaction between an incompressible,
potential flow and a homogeneous, elastic structure using the boundary element technique. The ability to
accurately model the fluid and structural boundaries can be quite important in the fields of aeroelasticity as
the emphasis in acroelasticity is;

. . . phenomena which exhibit appreciable reciprocal interaction (static or dynamic) between

aerodynamic forces and the deformations induced thercby in the structure of a flying vehicle, its

control mechanisms, or its propulsion system. (1:1)

For example, the twist angle-of-attack of a wing is composed of a series of incremental twists each caused
by the aerodynamic loading of the previous geometry (1: Eq 6-7). The original wing geometry causes
aerodynamic loading which in turn produces a twist, or deformation, to the wing. This deformation causes
a slightly changed .oading which in turn causes additional twist, and so on. The ability to compute this
incremental deformation determines the final solution to a problem of fluid flow past an elastic body. The
traditional approach to aeroelasticity is to perform a modal analysis of the structure assuming structural
shapes and determining the aerodynamic loads due to those shapes. The approach taken in this research
presents a very different one in that the fluid and structure govemning equations are simultaneously solved
by iterating and converging on a final solution in the sense of the example just quoted. The iterative
approach performed in this thesis is valid for steady-state problems, however the general boundary element
technique has the capability to model non-steady problems. The problem might just as easily been
formulated as the long-term response of a non-steady fluid/structure system.

The major thrust of this thesis is to research the application of the boundary element technique to

compute the incremental deformation of an elastic structure in fluid flow. The boundary element, or




boundary integral, method has been used to analyze the structure - fluid interaction problems in water
waves. As described in References 6 and 11 a semi-infinite (half) domain was formed using the surface of
the ocean as a free boundary, and the ocean bottom as a solid boundary. The solution was simultaneously
solved using an unsteady approach with frequency domain decomposition.

The boundary element technique was chosen over finite differences and finite elements because of its
ability to numerically approximate both the fluid and elastic structure governing equations with a common
definition of the fluid/structure boundary.

In the iterative process the flow conditions (velocity and density of the fluid at infinity), the
structural conditions (Young's modulus and Poisson's ratio), and the original boundary geometry specify
the critical state. The first step of the process is to compute the fluid pressure field about the structure, and
then determine the structural deformations caused by the pressure distribution. The new boundary geometry
is automatically calculated from the deformations, and the pressure field recalculated. This process can be
iterated to show how the structure changes shape.

An application of this program technique can be seen in a flight test program currently being
performed at the 4950th Test Wing, Wright-Patterson Air Force Base. The MILSTAR airworthiness
program is a flight test program to certify the airworthiness of a radome to cover a satellite antenna for the
MILSTAR terminal system (4). Because of a clearance of only one-half inch between the antenna and the
radome, one objective of the flight test program was to measure radome deformations to verify adequate
clearance. The analytical prediction of the radome deformations became a major task of the test team, and
was found to be highly manpower intensive. The aircraft/radome geometry was first entered into a
computational fluid dynamics prugram called QUADPAN (10) which calculated the pressures about the
radome assuming sit- . steady-state flow. QUADPAN itself is a type of boundary element code. The
radome structure was alsu ~~leled with a NASTRAN finite element geometry grid. Both of these tasks
took several week: 0 set u .. The users then ran the QUADPAN code at the desired flight conditions, fed
the resulting pressures through a program to translate them from the center of the QUADPAN panels to the
NASTRAN nodes, then input the translated pressure into the NASTRAN code to result in the final radome

deformation. Information on the changes to the pressure field due to the deformations, and the resulting




change in deformation would require extensive remodeling to the QUADPAN and NASTRAN geometry
models after each iteration. Due to the extensive effort involved in this remodeling, no iterations were
performed on the pressure/deformation solutions. Deformations recorded during flight were used to
determine the accuracy of the predicted deformations.

The boundary element code presented in this thesis has several advantages to the above method. The
users would only be required to set up the original aircraft and radome boundaries which is quite similar in
work effort to the generation of the QUADPAN model. Once the flow conditions and structural properties
were input, the program would then calculate the radome deformatinns and iterate to a steady-state solution.
A more extensive unsteady boundary element program than that presented in this research could conceivably
predict radome flutter using a time-marching scheme.

Subsequent chapters of this thesis covers a brief theoretical background of the boundary element
models used in the computer program, a description of the implementation of the theory, results of the
investigation, and conclusions and recommendations drawn from the research performed. While
simplifying assumptions have been made in the execution of this investigation, the general boundary
element technique has the ability to model complex governing equations and higher order approximation
techniques. The initial results obtained during the course of this work show promise towards the
suitability of the boundary element method for such as task, and follow-on studies are recommended to

further develop a code usable in the field.




IL._Theoretical Background

Numerical Approximation Techniques (2: Chap 2, 3: Chap 1)

During the recent decades the emphasis of engineering computations has shifted from analytical
approximating techniques to massive numerical approximations. Some of the most popular numerical
approximation techniques today are the finite difference method (FDM), the finite element method (FEM)
and the boundary element method (BEM).

The first two methods are 'domain’ methods.

These techniques discretize the domain of the problem under consideration into a number

of elements or cells. The governing equations of the problem are then approximated over the

region by functions which fully or partially satisfy the boundary conditions. (2:1)

In the finite difference method a series of nodes in a domain grid is defined and the discretized version of the
governing equation is satisfied only at those nodes. In the finite element method, the governing equation is
satisfied in an average sense over a region or element. In the case of the FEM the integrations are
conducted over the domain. In both methods, the user must discretize the domain as well as the boundary
of the region under consideration.

The third method is known as the boundary integral method, or the boundary element method, and
satisfiec the governing equations throughout the domain but only approximates the boundary conditions.
One of the first engineering applications of the BEM was the solution for Laplace-type probiems by O.D.
Kellogg in 1953 (7). J.L. Hess was also an important contributor to the development and use of boundary
element methods in fluid mechanics problems (5). Integral equation techniques have been in development
since the early 1950s, but they were overshadowed by the more popular finite difference and finite element
techniques due to the difficulty of defining the appropriate Green's functions for the BEM. Recently,
engineers have begun to rediscover boundary element methods and their advantages. A few of these
advantages are;

a. The govemning equations are reduced from domain integrals to boundary integrals thereby reducing

the order of the problem by one spatial dimension.




b. Boundary method techniques can be coupled with other techniques to improve the accuracy of the
solution.

¢. The boundary method can simply model problems with infinite domains.

d. Finally, and most important to the application of this thesis, only the boundary of the domain
must be discretized. Once the boundary geometry has been defined, both interior and exterior problems may
be solved without discretizing either domain. This advantage facilitates the modeling and tracking of
moving boundaries.

For practical engineering problems (full aircraft, three-dimensional geometry) current computational
ability favors a mixture of boundary integral formulations where applicable, augmented by finite difference
methods for regions where non-linear effects dominate.

All three of the approximation techniques are numerically related, and may be derived through the use
of the weighted residual technique. As an example of the weighted residual formulation consider 2

potential function u on a domain Q which satisfies the goveming equation:

2
V u-b=0 indomain Q )

The boundary conditions are of two types

@@ Essential or Dirichket conditions, suchas u = u on T v))

Cabd

(b) Natural or Neumann conditions, such as g.-%- = al, ?3)

The barred terms are the known conditions. The entire boundary is composed of I'y and I';. The outward

normal is defined as n (Figure 1).
When the function u and its boundary conditions are numerically approximated, errors are introduced
into the problem solution. A weighting function w* with continuous first derivatives is used to distribute

the error over the domain and boundary.




QOutward normal n

Figure 1. Domain and Boundary Notation

The weighted residual statement becomes;

2 .
f(Vu-b)wdQ=0 in domain Q @)
Q

Further discussion on the weighted residual technique is found in Appendix C. The finite difference method

can be obtained from Equation 4, and is called the "original statement";
2 . Su * aw‘
(Vu-b)wdﬂ: Bwdr- | o2 da ®)
Q an on
r r

For finite differences, the basis functions u and w* are normally different, where w* is usually the Dirac

delta function and the derivatives of u are local expansions such as Taylor series.




' Integrating Equation 4 oy parts once results in the "weak statement”;
u dw
— +b dl‘ +
(axk oxy v ) f v
Q

Finite element techniques base numerical approximations on this form of the governing equation. Most

finite element models are based on the method of Galerkin where both u and w* are related so that w* is a
variation of u associated with virtual displacements or velocities.

Integrating Equation 6 by parts once more obtains the "inverse statement”;

f(Vw)udQ fu——dl‘ fw'a_“dr +fbw'dg )
Q

‘ Equation 7 can be rewritten as;

fn(Vzw‘)udﬂ = f;%ln.dl"+ u%dl‘
r,

T,

-fﬂwdr- Q-“-wdl"+fbw‘d£2 ®
r dn on Q

1 T

Equation 8 is the basis for the boundary element method. Generally the weighting function is chosen so

that the left-side of the equation vanishes leaving the boundary terms.

Boundary Element Formulation (2: Chap 3, 3: Section 2.4)

If the boundary conditions are now defined as:

and q=?-§—1- ©

@
B
¥l




the boundary element formulation is:

‘/‘;(Vzw.)udﬂ=-frzaw‘dl“-frlq w‘dI"+
J;

uq d +f uqdr +f bw dQ (10)
2 r, Q

Assume that a concentrated charge is acting at point 'i', The governing equation becomes:

2 i
Vu+A =0 11)
where Al is a Dirac delta function at point i'. The solution to this equation is called the fundamental

solution where the effects of boundaries at infinity are considered. If equation 11 is satisfied with the

fundamental solution then:

2 . i
fu(VW)dQ=u (12)
Q

Equation 10 now becomes:

u‘+f uqdr+f uqd = iudr+f qudl"+fbwd.Q (13)
r, r, T, r, Q

Equation 13 is valid for any point in domain Q, but must be taken to the boundary to solve for the

boundary conditions. To do this a region with radius e is formed around the boundary point i (Figure 2).

Equation 13 is separated into integrals around I', and around I'-T',. By taking the limit as e approaches zero,

the integrals over I" - ', are continuous. The integral over ', for the right hand side contains a weak

singularity but remains continuous. The left side integral contains a higher order singularity because of
the derivative term. As the point i approaches the boundary along the normal, it produces a discontinuity

as the point passes through the boundary.




\

Y Boundary T

Source point i

Figure 2. Applying the BEM Equation to the Boundary

On the boundary Equation 13 is reduced to:

21tc‘ui+fuqd1“+f;qdl‘=f aud1‘+fqud1“+fbwdﬂ (14)
T, r, r, r, Q

The term (2 7 ci) represents the discontinuity and is a function of the boundary shape. By employing a
method similar to that for evaluating the discontinuity, it can be shown that the term equals the internal
angle of the boundary at the point i (3: 63,64). For a smooth boundary the term equals & and ¢l becomes

1/2. A second method of calculating ci will be discussed in Chapter 3.

Di { Indirect Method

The direct formulation of the BEM is the formulation discussed above. It may be derived through the
use of we.hted residuals as shown, or through Green's third identity, Betti's or similar theorys. The final
solution is the function u and its derivadves. For example, when modeling the elastic structure the final
solution is the deformation at the node points. An advantage of the direct formulation is that a general
surface with comers or edges may be used.

The indirect formulation of the Laplace equation problem sets up the problem as solely a single-layer




potential or solely a double-layer potential of continuous source distributions over the boundary. The
indirect method carries a restriction that the boundary must be smooth. The equations are then solved for

the source densities. Further discussion on the indirect method may be found in Reference 7.

Elements

As the name ‘boundary element method' implies, the boundary of domain Q is divided into segments
called elements (Figure 3). The general theory places no restrictions on the modeling of the element. For
simplicity, linear (flat) elements were used in the development of this thesis, but higher order elements

may be used to mode! the boundary more smoothly.

Element \

yd N

a) 8 linear elements (8 nodes) b) 4 quadratic elements (8 nodes)

Figure 3. Geometry Elements

The order of the geometry model will determine the continuity of the geometry slope. Throughout a
continuous boundary the du/dn terms may be calculated everywhere, but on a discontinuous boundary the
du/dn terms are undefined at the ends of the elements because the normal is undefined. A discontinuous
geometry slope will also cause the solution to display sharply singular behavior in the vicinity of the

comers. The major disadvantage to continuous geometry models is the degree of effort involved in the

10




implementation. For the purposes of this investigation, linear geometry modeling was used and therefore
the geometry slope is discontinuous at the element comners. The consequences of using discontinuous
geometry are discussed in Chapters 4 and 5

Approximations of the function u and its derivatives are assumed to vary over the element. The
governing equation is then written at various locations on each element called nodes. The number of nodes
on each element corresponds to the order of the approximating functions of u and q, and not necessarily to
the order of the element geometry. For example, u may be modeled with a parabolic function , and
therefore three function nodes, while the geometry element may be linear (Figure 4). The functions u and q
do not have to be modeled with the same order, in fact it may be more advantageous to take q of one order
less than u because it is the derivative of u. For the purpose of this research, the approximations of u and q

were equivalent order for simplicity of implementation.

Order of Geometry = 1st (2 nodes)
Order of Function u = 2nd (3 nodes)

Order of Function q = 1st (2 nodes)

Figure 4. Approximating Order of Functions and Corresponding Nodes

Internal and External Domains

At each node an outward normal to the element is calculated. The outward direction is defined in
relation to whether an internal or external problem is being solved. An internal problem is one which the
domain under study, €, is enclosed by the boundary, I. When the domain is outside the boundary, it is an
external problem (Figure 5). In the case of potential flow past an elastic structure, the flow would be an

external problem and the structure is an internal problem. The ability of the boundary element technique to

11




solve both internal and external solutions with the same boundary geometry allows the user to easily define

and track moving boundaries.

Domain ()

a) Internal Problem b) External Problem
Figure 5. Internal and External Problem Definitions
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III._Development of Models

The solution technique first calculates the potential of the fluid about the structure. Next, the
velocities and pressures on the surface due to the potential are determined. Finally, the elastic deformations
from the pressure field are found. A direct boundary element formulation was used for the potential,
velocity and deformation models. This research was limited to a two-dimensional problem, and the
following model development will only discuss two-dimensional solutions. A three-dimensional problem

is conceptually solved in a similar manner.

Potential Flow
The beginning equation of the direct method boundary element formulation for potential flow is:

GOwE + | uwq EOAE = [ g0 w € d® 1s)
N r

where;
€ are the locations of a continuous distribution of sources throughout domain Q
x are the coordinates for the point where the potential is being evaluated
I is the boundary of the domain
iis a point where the fundamental solution is applied, and is called a nodal point
u(x) is the unknown and is the potential at point x
q =dw/dn
w*(E,x) is the weighted residual weighting function

q*(§x) =dw*/dn

The fundamental solution to Laplace's equations is used as the weighting function w*. This solution

is the free space Green's function for the governing equation.

13




For two-dimensional problems the solution is:

‘1 1
=—In{=
v 2n (l') 16

Equation 15 has been divided through by 2 = so that the 2 & appears in the denominator of w* and g*. The

distance between & and x is shown in Figure 6 and is determined by:

(€0 =62l = Va®-x@) + G ®-y @) an

for a Cartesian two-dimensional system.

? Source Point, &
y

Field Point x

Figure 6. Source and Field Points

14




‘ When the boundary is discretized into elements Equation 15 becomes:

N . N .
Ciu; + ¥ fuqd1‘= Y fw qdr (18)
j=1 °Ti j=1 ° T

where N is the number of geometric elements and I‘j is the length of element j.

An elemental coordinate system is set up for each element as shown in Figure 7. The values of u

and q vary over the element as a function of the coordinate 1.

/'3
y
n=1
L "
n=0
n=-1
>
X
Figure 7. Elemental Coordinate System
The functions u and q may be approximated with shape, or interpolation, functions such that:
[w
u
u = Ny + Naugs .+ N, = [NNom, - N [ (19)
u,

15
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@

Q= Ny + Ny + - . - + Ny, = [Ny, Ny, ... N | @0

a4

where r is the order of the function modeling (i.e., second, third,etc). Appendix C provides a brief overview
of shape functions. Notice that uy and g, are the amplitudes of the functions at the node points and are no

longer functions of . Therefore, they may be taken outside the integrals.
The integrals are with respect to the boundary T, but u and q are functions of 1. A Jacobian is used

to transform the integral as detailed in Appendix C ;

&G = |G|dn oy,

By using Equations 19, 20 and 21, Equation 18 now becomes:

N .
ciu; + ,zl(fr,[Nl(n),Nz(n), ... N ]q [ol cm) - @)
" l u, ).
J
QG
N . Q
jEl(frj[Nl(n),Nz(n), N,(n)]w |Gl dn)
&/

Over each element j there are r nodes. Globally, there are m = j x r total nodes on the boundary (Fig 8).

The integral on the left-hand side of Equation 22 can be written as:

uy u \
. u 1 2 ; u
f 4[N1(Tl),N2(11). e Nz(ﬂ)]q |G| dn 2 V= [hij.hg, . hi; ] 2

u . .
r/)i U, j




~~

k
‘ where the hij are influence coefficients fining the interaction between the point i under

consideration and a particular node k on element j. The same can be done for the right-hand side integral,

so that Equation 22 can now be written as:

N N &
cu; + ¥ hjuy = Zlgi,“h (24)
j=1 j=

Global Node Numbers
2 Element 6

Elehent 4 Element 5

. 2
1 Element 1 3 i—6 I8
Tr== . J = , I =

Element Node Numbers

Figure 8. Elemental and Global Node Numbering

When summed over all the elements, equation 24 can be written;

uy Ch\
- ——— -——— u
ciui+[H“,Hi2, s e ay Him] 2 =[Gil’Gi2a"'!Gim] © ; (25)
Um Um

where m equals the total number of nodes around the boundary in the global numbering system

and:
(26)

. Hi =ernj<n> QEX)|Gldn
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where the index i is onthe node i and nj is the nth node on element j in the global numbering system.

Using Figure 8 for reference, 1-1/1\15 is the influence at global node 15(n=3,j=5) de
to point 1. The c,u; term may be akkd to the H matrix such that

Hij=Hij fori#j 28)
Hij=Hij+ci fori=j

Equation 2$ is repeated for each node i (m total) and produces a matrix equation;
Hu= G ¢q (29)
For a smooth boundary, it can be shown that the coefficient, c;, is equal to 1/2 as discussed in Chapter 2.

If the surface is not smooth, it will not be equal to 1/2. The diagonal term of H may also be calculated by
using the fact that when a uniform potential is applied on the whole body the sum of the values of q's must
be zero. For internal or closed problems ;

HI =0 (30

so that the sum of each row in H should be zero (3:111). Therefore,

N M 3 .
Hii='ZHij i=1,2,.....,Ni=#j %))
For exterior, or unbounded, problems it can be shown (3:112) that:

N
Hij=-3 Hjj+1 i=1,2,..... N i#j (32)

j=1

The boundary conditions, q, can be calculated using the assumption of zero flow through the boundary.

This means that the source must produce equal and oppocite flow to the flow at the boundary, or:
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where n; is the outward unit normal at point i and V_ is the flow condition at infinity.

The matrices H and G may be calculated numerically using numerical quadrature for the integral
terms. Equation 29 is a m x m system of equations. As the integration progresses around the boundary,
for each node i there will be a panel for which the integration is singular (r approaches and equals 0). Care
must be taken to properly integrate these singular panels. Note that ;

y aw d (1

= = - l =L ¢ l
1&x) on on anr) 2n (n V(ln r)) 34

On a flat singular panel the normal is perpendicular to the panel and therefore;
n'V(ln--) =0 (35)

Therefore, the ﬁ terms are zero on the singular panel. With higher order geometric modeling this is not

the case and this term must be addressed.

Velocity and P Distributi

Once Equation 29 is solved for the potential at the nodes, the velocity and pressure distribution at the

nodes can be determined. The components of the perturbation velocity at node i are calculated using:

e ™ s I o W - Jpu0 G 36)

A m x m system of equations may be set up for Equation 36 similarly to that described above, and
numerical quadrature used to calculate the terms of the matrices. The functions g(x) and u(x) are known
from previous calculations so that the velocity may be solved. The components of the perturbation
velocity in the x and y directions are:

g RO g @)

= 3
() ) ©n
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and the total perturbation velocity is calculated by:

[ 2
Vo=Vu +v (38)

The total velocity at noce i is equal to:

V= V.-V, (39)
The pressure field about the body is computed using
v 2
=1 - |— 40
Co (V,,) (40)
1 2
P=:p.Ve Cp @1
P,=P'n, ad P,=P'n, 42

Py and Py are the components of the pressure acting on the surface or the surface tractions.

Elastic Structure

The development of the boundary element formulation for the elastic structure is quite similar to that
of the potential flow. The structure consists of subregions formed by an outer boundary, inner boundary
and connecting elements as shown in Figure 9. The connecting elements allow the effect of a force at one
point on the boundary to be transferred around the structure. For this investigation, the same number of
nodes were used on the outside, inside and connecting elements although this is not required.

The beginning statement for each subregion is:

Cijuj + fPij“jdr = fui,-P,-dI“ + f“ijbjdg 43)
r r Q

where
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u is now the unknown displacements in the j direction

Pj is the traction or natural boundary conditions in the j direction (the pressures calculated above)

bj is the body force in the j direction and is assumed zero for this research.

The fundamental solution w* for a two-dimensional plane strain problem is (2:187):

wij = m———
8n(1-v)G

Connecting
Element

(N

Subreggn 1

Outer

Subregion 4

Boundary

Subregion 2

Subregion 3

Figure 9. Structure Geometry

1 {(3-4v) In) &;; + 9
axi

The solution p* is defined as:

»

Pi;

_ -1
T an (dv)r

K.

]
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As with the potential flow equations, the functions u and q are represented with shape functions and

the integrals transformed from the dI” to the dn system.

Equation 43 can be written:
Uy P1
Uz P2
Cilli+[hn. hiz,...,hii,.-..him] =[811.8i2,--~-8ii,---.81m] 46)
U; Pi
Up Pm

m is the total number of nodes around the outer boundary and is equal to the nodes around the inner
boundary and also around the connecting elements. The approximating functions of u and q are modeled
with the same order, r, on all elements. Therefore, m = 3 x r nodes around the region. Note that the

matrix terms are 2 x 2 for the two-dimensional case because they contain the terms;

~ h:: h; gi' = gi.
hij = ij = i) xy g = ) ] XY ] (47)
[hi,-,,l by P i By

For the three-dimensional case the matrices would be 3 x 3.

Equation 46 produces a 1x(3xrx2) system of equations for each node i. Equation 46 is calculated twice
for each of the nodes on the connecting element; once for the element to the left and once for the element
to the right. In this way the matrices have (4xrx2) rows. The final system of equastions is a (4xrx2) x
(3xrx2) system,

The coefficient c; may be handled similarly to Equation 29 to form the system of equations:
Hu = GP (48)
The c; coefficient may be calculated using rigid-body considerations in a bounded body (3:201). If a unit
rigid-body displacement is made in any direction Equation 48 becomes:

HIg=0 (49)
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where I 4 is a vector of unit displacements in the d direction. The diagonal terms of H become:

N
ST by faizj (50)

i=1

Assembly of Subregions. For each subregion in the structure the system in Equation 48 may be
developed. To solve for the deformations about the entire body, the systems of equations must be
assembled into a global system of equations. This is done by renumbering the nodes around the structure.
The nodes around the outside are numbered 1 to m, the nodes about the inside m+1 to 2m, and the nodes on
the connecting elements 2m+1 to 3m (Figure 10). The H and G matrices are now (8xm) x (6xm). The

global system of equations is:

HﬂthanmnHuva'nxy Htmxy
n n n n n in
chnH'nn HmuHuxyH'ancnv

an an an an oam om Uas x
HmuthHmnHuxthwHuv .
an an an an an an Uinx
HmnH'nn Hmanthv Hcmv Ugmn x
ax ax ot _ oz at oz - (63))
Hmnyh;HmyHnythmew Uaxy
n n in in n n Upy
Hos  Hin s Han e Hos 3y Hinyy Han gy "
an an an an an an any
HﬂlnH'nyHmenth'anmw
oan an an an an on
Haxnyh)chnnyonythyy Hun)y
az ax ax ax ot at
GalnG'nnGcmxxanyG'nxmeq
n n n n n
Guann GcmnGcnvG'nxmexy
an an an an an om Qox x
GmnGnnGmnGmxythGmw )
an an an an an Qin x
GaannnGmnthxyG'nxchmxy Qo x
ax g at at at
Gu,Gn,Gm,G“,,G-,,,,Gm,, Qaxy
in n n in n n Qny
GM!G'nsnGmnyuwG'antmw
an an an an an an Qan y
Gm!thGmmewG‘antmw
an an an an an an
Gm)lG'nnyannyuny'nnyanyy
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where uijlk and Gijlk are the influence coefficients at node i due to panel j in the Ik direction.The boundary
forces around the boundaries are the pressures from the fluid and have been calculated previously. The
boundary tractions along the connecting surfaces are unknowns and must be calculated with the unknown
deformations. The columns of G and the corresponding rows of P are transferred to the left-hand side of
the equations forming a (8xm) x (8xm) matrix with (8xm) unknowns. This final set of equations may now

be solved for the unknown deformations and internal tractions.
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r=3, j=4,m=12, 3xm=36

Figure 10. Global Node Numbering for Structure
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IV, Implementation
Once the potential, velocity and elastic deformation models were developed, they were coded into a
Fortran computer program. Several simplifications, assumptions and numerical approximations were

included in the program code.

Geometry

The structure used during this research was a two-dimensional thick-walled cylinder with an outer and
inner radius (Figure 11). The geometry was modeled as flat elements with geometry nodes at the left and
right ends of the elements (n=-1, 1=1). The number of elements around the cylinder could be varied so
that the cylinder could be modeled very crudely with 8 elements as shown in Figure 11, or finely with up
to 150 elements. The number of outer boundary elements, inner boundary elements and connecting
elements were equal for ease of geometry definition. The elements were numbered in a counterclockwise
direction with the structure domain remaining on the left-side as one travels around the outer boundary, and
on the right-side along the inner boundary. The connecting elements were specified so that the left end
would be on the outer boundary and the right end on the inner boundary.

The element Jacobian was calculated as detailed in Appendix C, and the outward normals calculated

by:

ad n, = (52)

Because of the counterclockwise setup of the elements, the outward normal on the outer boundary is
into the structure and therefore the correct sign for the potential flow calculations. For the elastic
deformation calculations a negative sign must be applied to the normal so that it may be an outward
normal for the structure. The inner boundary normal is in the correct direction for the elastic deformations.

The correct direction of the connecting elements outward normals were determined in the same manner.
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Figure 11. Geometry Modeled With 8 Flat Elements

The arder of the potential, pressure and deformation approximation was equal and could be specified
from constant (1 node) to 4th order (5 nodes). Therefore, the potential, pressure and deformation were all
calculated at the same node. The general BEM formulation does not require this assumption. The distance
of the end nodes to the element comer, 8, was specified by the user. In this way the effect of the distance
between the end node and the comer could be investigated. The end node was never placed directly on the
comer (8 = 0). As previously discussed there are several difficulties that arise if the node is placed directly
on the comer which is a geometry slope discontinuity. The remaining nodes were spaced equally between
the end nodes (Figure 12) with the same number of nodes used on the outer, inner and connecting boundary

elements.
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Figure 12. Nodal Spacing Within An Element

Once the deformations at the node points were calculated, the deformations at the ends of each panel
were determined using the shape functions. For example, the deformations at the left end of a panel are:

ux(n'-"'l) = Nl(‘l) Uy + NZ(‘I) Ug2 + ... + Nr('l) Oy,

(53)
uyM=-1) = N;(-Duy, + Na(-Duyy + ... + N(-Duy,

where Nj(-1) is the shape function at n=-1 for element node i, and u xj and u yi are the deformations at node

i on the element. Tile deformations at the right-end of the element were calculated in a similar manner.

Because the discontinuous slope at the corners causes stress concentrationsat the corners the deformation.s
are not continuous from element to element. In order to force continuity of the new geometry, the
deformations as each comer were averaged with the deformation of the right panel and the deformation of
the left panel. The averaged deformations were applied to the original geometry resulting in the new
geometry boundaries. Once the new outer and inner geometry was calculated, the connecting element

geometry was recalculated.

Potential Flow

Potential flow acts only on the outer boundary. There is no flow inside the cylinder. The potential
flow subroutine consists of an_outer loop on the number of nodes and an inner loop on the number of

elements. For each node the routine sets up Equation 15 and numerically integrates over all the elements.
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The functions w* and q* are defined as:

2 r 2r 2

R Rl e

On the non-singular elements the integration was performed with a Gaussian quadrature:

1 N
j fmd = 1f(ni)wi (55)
-1 =

1

where N is the order of the quadrature, 1j; are the quadrature values and w; the quadrature weights. The order

of the quadrature used was determined by comparing the numerical integration results with analytical results
as the element end points were moved towards the corner. In this way it was found that a 12th order
quadrature was required to obtain accurate integrations for small values of 8. This was also verified by
comparison of the diagonal terms of the H matrix as the quadrature order was increased. Because the
geometry was always smooth at the nodes, the diagonal term should be .5. A 12th order quadrature was
required to obtain .5 as the end nodes came very close to the corners (§ = .01). This high order is due to the
1/r term which causes r to become very small as the node is moved to the end of the panel.

The singular element integrations were performed with a different quadrature formula. The singular
terms of the H matrix (q* integral) vanish because the normal is perpendicular to the panel for flat panels
(Eq 34, 35). For the G matrix, a one-dimensional logarithmic Gaussian quadrature formula is used (3:449).
Because the formula is designed for an integral from 0 to 1 with the singularity at 0, the integral is broken

into two separate integrals:

1

1 r=0
f[N(n)](i)ln(l)lGwa f(n)m(l)dq+ff(n)1n(l_)m 56)
| 2n r | r . r
1
=f-f(ﬁ)m(
0

- | —
- | —

1
)<1+n(r=0»<h‘1+f f(ﬁ)ln( )(1-n<r=0))dﬁ
0
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where

- n-nw=0 = n-n@c=0)
"= Toese ™ T Teco D

S is now defined as the location of the singularity on the panel (n(r=0)). On the singular element

r=|s -nl—Le—"iﬂ (58)

where Length is the length of the panel. Substituting Equation 58 into Equation 56 results in:

1
f f('q)ln(%-)dn= (59)
1 '

=2:I'-]-1 and TI=2;—‘1 (60)

3

Using Equation 59 the singular terms of the G matrix were calculated. Once the H and G matrices are
filled, the program calculates the diagonal terms of the H matrix using Equation 32, and the boundary

condition matrix q using no flow through the boundary (Equation 33).

Velogity and P Field

The velocity and pressure subroutine is similar to the potential flow routine in that it performs an outer
loop on the number of nodes and an inner loop on the number of elements. The fundamental solutions are

now:
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w__-1x ow__ -1 %
xx 2w 2 ™ @ “2n r >
and
. . 2
oq =Lf2ﬂi'(l’ini’rj“i)2ri ad 9 =1 r0-@ni-nn)2y 62)

where the r; and 1) terms are the components of r in the x and y direction. The non-singular integrals are

approximated by a 12th order Gaussian quadrature.

On the singular panels the following approximations are made (Figure 13):

r=|x-m 1_&"2&‘1 (63)
r; =(I-§%)rcos9 ad 1;= X- )rsine 64)
x-7 x-1
(x2,y2)

Integration Point M

(x1,y1)

Figure 13. Singular Panel Approximation Definitions
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Because r is always postive, a correction factor was required to place the correct sign on the r components.

The angle formed by the x-axis and the element is 8 and is calculated by:

X2°X1  od  sing= J27Y1 (65)

Length

cos 0 =

where (x5,y,) are the coordinates of the right end of the panel, and (x,,y,) are the coordinates for the left

end.
By using Equations 63, 64 and 65 Equation 61 reduces to a 1/r singularity term. A quadrature using

a numerical evaluation of Cauchy principal values (3:451) was used for the integrations.

! K
f0 =3 f[(-l -S)nj+ S]wi + £(S)In|-1-§| (66)
RECRE R

K
- z;f[(l S0+ S]wi - (S l1-5|

Equation 62 reduces to a 142 singularity. From Reference 9 this can be approximated by a quadrature rule

using;

1

. K X

f_ﬂ_sz)dn =zwif£“z_9-(zﬁg+2) f M=0) 6D
P il i =

Note that Equation 67 assumes that the singularity is in the center of the element. To use this the
singular element was divided into one segment center around the sigularity, and a second segment which

does not contain the singularity.

axd
1 ”~~
f U f Eﬂzl.s (end - start) & + non-singular integral (68)
n -~
1 n
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where start = start of singular segment and end = end of singular segment. If the singular segment is from

-1 to end, then the non-singular integr>! “vill be:

1
n' ~ ~ - end
non-singular integral =f -fﬂzl.S(l-md)m where n = 2(:‘ po= ) -1 (69)
1 n
If the singular segment is from start to 1, then the non-singular integral will be:
1
non-singular integral = f.i‘gl.s (start + 1) dn  where H=2(ST'\m% -1 (70)

1 ;l’
The second integral may be solved using a normal Gaussian quadrature while the singular segment may use
Equation 67.

Both the boundary conditions and the potential are known at the nodal points. Equation 36 is solved
at each node in the x direction for the x-component of perturbation velocity and in the y direction for the
y-component of perturbation velocity. The total perturbation velocity is subtracted from the oncoming
flow velocity at each node to determine the final velocity at each node. The pressurc field on the cuter
surface is then calculated using Equations 40, 41 and 42. By changing the density of the fluid, the user
may increase or decrease the magnitude of the pressure on the cylinder.

For the pressure field on the inner boundary the inner pressure was assumed constant, and was set
equal to a pressure on an outer node. This approximates the cylinder being vented to the outside. The node
could be chosen by the user, and was selected as a node on the back of the cylinder where the pressure
approached stagnation pressure. Once a vented node was specified, the pressure field on the inner boundary

was determined.
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Elastic Deformati

The elastic deformations were determined in a nested three step process. The outer step is on the
subregions of the structure, the next step on the nodes around the subregion, and the innermost step on the
elements around the subregion. The fundamental equations, w* and q*, are given in Equations 44 and 45.
For the non-singular integrals the 12th order quadrature is used. For the singular integrals the equations are
reduced to In(1/r) and (1/r) singularities whose quadrature forms have been previously discussed. As the
routine progresses around a subregion it places the terms of the H and G matrices into the global
numbering system rows and colunins. When the routine has finished looping around all the subregions,
the matrices are entirely filled. This routine did not attempt to optimize the H and G matrices. If
optimization were to be performed, the matrices would be banded which would reduce the time required for
solution. The diagonal terms of the H matrix are calculated using Equation 50 and the unknown tractions
are moved to the left-hand side of the equation. The system of equations is then solved for the deformations

at the nodal points.

Solution of Linear Equati

The matrix system HU = Gq was sol' ed using a routine found in Reference 2 (2:67). The proper
execution of this routine was ve..fied using IMSL routines. IMSL was not used because it requires
additional workspace. Because of the large systems of matrix equations used in the program, memory space

was a driving factor to the size of the problem solved.

Continuity Considera

Because the end nodes of the potential and deformation functions were not on the end of the element,
the approximating functions were not constrained to be continuous from element to element. To force the
potential to be continuous between elements a continuity restriction could be enforced at the corners. At

each comer the function u computed using shape functions from the left element equalled the function




computed using shape functions from the right element:

Nl(-l)um+N2(~l)u2n+ e +N,(-1)um =N1(1)UIH+N2(1)023+ . e +N,(l)u,1f (71)

Nl(—l)uln+N2(-l)u2n+ e +Nr('l)u!n - Nl(l)u“f-Nz(l)uw- .o -N,(l)uﬂf=0 (72)

A row of the Hu = Gq system was replaced on each element by Equation 72. When solved, the new
system of equations produced continuous values of the function about the surface. In practice, the order of
the approximating function was increased to allow the same number of collocation points on the elements
as were used without the continuity restraint. An alternative approach not used here would have been to
use a least squares solution by applying a single value decomposition solver. This approach would not
have ensured continuity, however, and was rejected in favor of the first approach.

Slope continuity would be desirable. However, since the geometry was modeled as straight line
segments the solutinn was expected to display singular behavior in the vicinity of the corners (8). This is
analogous to the stress concentrations expected at sharp comers in elastic solutions. If the geometry model
is forced to have continuous slope in the future, it would be desirable to enforce not only continuity of the
unknown but also continuity of its slope at the junction of the elements.

The notion of a least squares approach could be applied to higher order elements. This could replace
the existing linear terms satisfying the original geometric nodal data and the slope continuity requirement.

The new geometric nodal points could then be used to describe the boundary.

Iierative Process

The potential, velocity and pressure field due to the original geometry are calculated the first pass
through the routine. The deformations caused by the pressure field (surface tractions) are determined, and
the average cormner deformations are applied to the original geometry resulting in a deformed geometry.

A new potential, velocity and pressure field are calculated. Beginning with the second iteration the
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elastic structure is in a pre-stressed condition. If the total pressure field is used to calculate the
deformations, it would be equivalent to releasing the stresses in the structure after each iteration and
beginning from an initial condition. To model the pre-stressed condition the new surface tractions are
subtracted from the old tractions. This difference determines the tractions caused only by the deformations
from the previous iteration. The difference is then used to calculate the new deformations and new
geometry.

The program iterates in the above manner, calculating new tractions and deformations each iteration.
If the structure has adequate stiffness, the incremental deformations will approach zero, and a steady-state
condition will be obtained. If the stiffness is not adequate for the flow condition, the iterative process will

not reach a steady-state condition.
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The results of the research are presented as solutions of potential, velocity, coefficient of pressure
and deformation. Because the solution of potential flow about a cylinder is well known, the results of the
BEM potential flow are compared to theory to validate the potential flow code. Once the potential
solutions have been discussed, the results of the elastic deformations are discussed and are compared to

results from a FEM solution. Finally, the iteration of the fluid-structure problem is discussed.

Effect of El Si Solut

The structure could be modeled with 8 to 120 elements, and as the number of elements increased the
size of each element decreased. As the element size decreased, the geometry approached that of a cylinder.
Therefore, it would be expected that as the size of elements decreased the BEM solution for the velocity and
pressure would approach theoretical values about a cylinder.

The coefficient of pressure was the parameter chosen to discuss because it is the end result of the
potential and velocity calculations. Figures Al, A2 and A3 illustrate the effect of element size on the
solution of coefficient of pressure (Cp) for constant, linear and parabolic modeling of potential and
velocity. The solution is presented for 8 elements, 40 elements and 120 elements about the structure. The
angle around the cylinder, Theta (8), is measured from the front stagnation point in a clockwise direction
(Figure 14). The constant order approximation results in step function solutions, the linear approximation
as a linear solution from one end of the element to the other, and the parabolic approximation results in
parabolic behavior of the solution, The spikes in the parabolic solution are expected due to the
discontinuity of the geometry slope as discussed in Chapter 4 and in Reference 8. Note that as the element
size decreases, the amplitude of the spikes decreases also, although the ratio of element size to spike
amplitude increases. If the geometry was modeled with slope continuity, it would be expected that the

parabolic approximation solution spikes would smooth.
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Figure 14. Definition of Angle Around Cylinder
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The approximations are compared against each other for 8, 40 and 120 elements in Figures A3, A4

and AS. Higher order approximations than parabolic would also display singular behavior near the corners.

Effect of End Node Locat Solui

The effect of moving the end nodes towards the element comer are shown in Figures A7 and AS8.
Parabolic approximating order was used for this comparison. The location of the end nodes does appear to
effect the solution. As shown, moving the nodes closer to the comers causes the spiking behavior to

amplify. This is due to the In(1/r) and 1/r singular behavior of the fundamental solutions which cause the

38




integrals to increase towards infinity. Indeed, when the nodes were placed within .1 & of the comers, the

solution quickly became invalid.

. ison of Potential Flow Resulis With T

Linear approximations with 120 elements were chosen for the comparison of the BEM results with
theory. Figures A9 through A12 show comparisons of the potential flow velocities and Cp calculations.
For an fluid flow velocity of 1, theoretical values of Cp are 1 at the front and back stagnation points
(0 =0, 180), and -3 as the flow acclerates around the top and bottom of the cylinder (8 = 90, 270). As
shown, the results of the code model the stagnation pressure well with any element size. The improvement
of the solution due to decreasing element size is most apparent at the top and bottom of the cylinder as the
solution converges towards theory. The largest error of the BEM appears at the top and bottom of the

structure and is on the order of 2.4% of Cp. Figure A13, which displays the comparison of BEM potential

with theory, shows that the BEM results overlay those of theory.

The elastic deformations were calculated using 40 flat elements and a linear approximation of the
potentiai and deformation. Although 120 elements produced a slightly smoother pressure distribution than
40 elements, it also significantly increases the computer time required for solution. This is because a
(8xm) x (8xm) system of equations is solved to determine the deformation. For 40 elements with linear
modeling this produces a 640 x 640 system of equations which took approximately 40 minutes to execute
on the AFIT Interim Computer Capability (ICC) system. 'I"he ICC is an Elxsi 6400 superminicomputer
with the Berkeley 4.3 UNIX operating system. A 1920 x 1920 system of equations is p@u :ed for 120
elements with linear modeling. Due to this factor, it was felt that the solution with 40 elements was
adequate to show trends and results of the BEM code. For flat elements and linear approximation of

deformation, a larger number of elements would serve to slightly smooth the final results.
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The density of the potential fluid was defined as that of water at standard day temperature (1.937
slugs/ft3). The structure was modeled with a Young's modulus of 1000, and a Poisson's ratio of 0.3.
These assignments were made so that the resulting deformations would be large and more apparent.

The x and y components of deformation about the outer boundary are shown in Figures A14 and
AlS. The figures represent the structure being deformed inward on the front and back sides, and pulled
outward at the top and bottom (Figure 15). This outward pulling is caused by the accelerated flow
producing negative values of Cp, and therefore the pressure at the top and bottom is outward. The
deformation along the inner boundary, although not shown, was outward in all directions, nearly equally
opposing the outer boundary on the front and back and pushing outward in the same amount as the outer
boundary on the top and bottom (Figure 15). The inflections of the deformation curves are due to the

element bulging.

Figure 15. Direction of Deformations on the Structure
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. ' Ricid-Body Consii

Note that although the structure was not physically pinned, rigid-body movement is constrained and
the structure does not translate or rotate. There is zero deformation in the x direction at the top and bottom
restricting side-to-side movement, and zero deformation in the y direction at the sides retricting up and down
movement. This is due to the method of calculating the coefficient cl with consideration of rigid-body
movements. Effectively, by calculating the diagonal terms of the H matrix from a summation of the terms
on the row, the solution is constrained. Additional boundary conditions may be placed on the structure if

desired, and the system of equations treated accordingly.

C :son With Finite El Model

A finite element mesh was constructed with 40 linear elements. The internal pressure calculated

from the BEM potental flow code was distributed at all the internal nodes. Concentrated forces were placed
‘ at the outer boundary nodes to represent the pressure distribution determined from the BEM solution.

Because the FEM nodes were at the corners of the elements, the BEM pressure was calculated at the
end points using shape functions and averaged between elements to determine the concentrated pressure
values at the comers.

The deformations from the FEM code are shown in Figures A16 and A17. The shape of the BEM
and FEM solutions are nearly identical, and although the magnitudes are different, they are consistent with

past experience of the FEM code used.

lteration of Fluid/s Soluti

A linking geometry routine was written to apply the elastic deformations to the original structure
boundary, and then to recalculate the potential and structural solutions. Once the original geometry was

defined, no additional information was required from the user to iterate on the solutions. This factor is the
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major advantage to a boundary element formulation over the domain formulations as discussed in this
research.

For the iterative results, 8 elements were used with linear approximation functions. The first
calculated x and y components of deformation are plotted in Figures A18 and A20. Results from the third
to the 9th iterations are shown in Figures A19 and A21. As shown, the magnitudes of the deformations
decrease with each interation, and have approached zero within 12 decimal places by the 9th iteration

thereby indicating a steady-state solution has been obtained.
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The major objective of this investigation was to determine the application of the boundary element
technique to compute the incremental deformations of an elastic structure in fluid flow. The main
advantage to the boundary element formulation over finite differences or finite elements is that it can
numerically approximate both the fluid and elastic structure governing equations with a common definition
of the fluid/structure boundary.

Results obtained during the course of this research indicate the the BEM does have a favorable
application to the aeroelastic problem of fluid flow past an elastic body. While simplifying assumptions
have been made in the execution of this thesis, it could be seen that this method presents a user friendly
approach to the problem definition. The fact that once the original boundary is specified the user is not
required to continuously redefine the geometry would be a large advantage in using organizations such as
the 4950th Test Wing. Also, as implemented in this study, the user is able to use several different
approximating orders rather than be limited to one. This would allow better modeling of the solution as a
function of the problem to be solved.

As shown with the results from the program, the BEM can provide accurate results. The iterative
capability of the code was also verified. This capability should prove to be an improvement over current
computational techniques of the calculation of airloads and deformations in an aeroelastic system. While
the process did produce steady-state solutions, the stability of the BEM iterative formulation should be
more thoroughly researched. Stability criteria, such as that used in finite difference and finite element
codes, may become applicable.

The largest factor towards accurate implementation of the formulation is the approximation of the
boundary geometry. While presenting a simple method of implementation, discontinuous geometry slope
produces many undesirable results and the use of continuors higher order geometry elements is highly
recommended for future researchers.

Several additional features could be added to increase the versitility of the code. For example;
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‘ three-dimensional problems, adding wakes to properly solve for lifting body problems, and using
non-stead; problem implementation. The applicability of the FEM to acroelastic problems would be

increased by each of these additions.




Appendix A: Investigation Results
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Appendix B: Program Routines
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcececccee
FLUID - STRUCTURE INTERACTION USING BOUNDARY ELEMENT TECHNIQUE
THESIS PROJECT

NORMA F TAYLOR
GAE-88D

0000000

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCC
MAIN PROGRAM

C

C

c

C IFLAG = 1 PERFORM FLUID CALCULATIONS ONLY

(o = OTHER ITERATE BETWEEN FLUID AND STRUCTURE
C PFLAG = 1 PRINT OUT POTENTIAL INFORMATION

C = 2 PRINT OUT STRUCTURAL INFORMATION

(o] = 3 PRINT OUT BOTH

o

C

(222 2222 4222222222222 222283222 2 2222 222222222222 R iRt 2 2Rt dd )

implicit real®*s8 (a-h,o~z)

COMMON/FLAGS/IFLAG, PFLAG, ITER

COMMON /GEOMET/NNODES , NELEMS, ORDER, EPS ,NORMI, NORMJ, JAC, NODEC,
*NODPIN 1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/POTEN/VINF ,ALPHA,VI,VJ, PINF, RHOINF,GAMMA , MINF2, NODEP
COMMON/FPLOW/H (240,240),G(240,240),0(240),GHAT(240)
COMMON/STRUCT/GE , XNU,HS (1920, 1920),GS( 1920, 1440) ,GSHAT(1920)
COMMON/POSITION/X1(1080),YI(1080)

COMMON /VELOCIT/UVEL(240),VVEL(240) ,XFORC(480),YFORC(480),
*XOLD(480),YOLD(480)

REAL*8 NODE,GAMMA,MINF2,NORMI,NORMJ,JAC

INTEGER ORDER, PFLAG

000

READ(5, 1) IFLAG,PFLAG
1 FORMAT(211)

READ(5,2) ITERATE
2 FORMAT(12)

[g]

IF(IFLAG.EQ. 1) THEN
PERFORM FLUID CALCULATIONS ONLY

READ IN GEOMETRY AND FLUID INFORMATION
FORM H(PHI)=GHAT SYSTEM

SOLVE FOR PHI

CALCULATE PRESSURES (XFORC,YFORC)

e Ne e N Ne e Ee N2l

CALL GEOMIN

CALL GOUTPUT(ITER)
CALL FLUIDIN

CALL FFORM

CALL QFLOW

DO 5 I=1,NNODES
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(¢ Mo Ny

e N N e N e Ne e NeNe Ee e Ne)

GHAT(I)=0.0

DO 5 J=1,NNODES

GHAT(I)=GHAT(1)+G(I1,J)*Q(J)
5 CONTINUE

CALL

IF(PFLAG.EQ. 1.OR. PFLAG.EQ.3) CALL HGQOUT

HDIAG

CALL SOLVE({G,GHAT,D,NNODES, 240)

NOTE THAT AFTER GOING THROUGH SOLVE GHAT IS THE SOLUTION PHI

CALCULATE BOTH FLUID AND STRUCTURAL INFORMATION
AND ITERATE UNTIL STEADY STATE SOLUTION IS REACHED

CALL VELOC

CALL PRESSURE

CALL FLOWOUT

CALL DRAW(ITERATE)

ELSE

READ IN GEOMETRY,
CAILCULATE H(PHI)=~GHAT SYSTEM
SOLVE FOR PHI
CAILCULATE SURFACE PRESSURES
CALCULATE HS (U)=GSHAT SYSTEM
SOLVE FPOR DEFORMATIONS U
CALCULATE NEW GEOMETRY
ITERATE

ITER=()

CALL GEOMIN

CALL GOUTPUT(ITER)

CALL PLUIDIN

CALL SINFO

100 CALL FFORM
CALL QFLOW

DO 105 1I=1,NNODES

GHAT(I)=0.0

DO 105 J=1,NNODES

FLUID AND STRUCTURAL INFORMATION

GHAT(I)=GHAT(I)+G(I,J)*Q(J)
105 CONTINUE
CALL HDIAG

IF(PFLAG.EQ. 1.OR.PFLAG.EQ.3) CALL HGQOUT

CALL SOLVE (H,GHAT,D,NNODES, 240}

NOTE THAT

CALL
CALL
CALL
CALL
CALL
CALL

IFP(PFLAG.EQ.2.0R.PFLAG.EQ. 3)

MAIN 2/3

AFTER GOING THROUGH SOLVE GHAT IS REALLY THE SOLUTION PHI

VELOC
PRESSURE
FLOWOUT
SFORM
HSDIAG
GSHATT

CALL SOUT

CALL SOLVE(HS,GSHAT,D,NNODES*8,1920)




C

C NOTE THAT AFTER SOLVES GSHAT IS REALLY THE DEFORMATION U

(o

CALL SOUTPUT(1TER)
ITER=ITER+1
CALL DRAW(ITER)
CALL DEFENDS
CALL GOUTPUT (ITER)
IFP(ITER.LT. ITERATE) GO TO 100

ENDIP

150 CONTINUE
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCce
C DEFENDs

C THIS ROUTINE CALCULATES THE DEFORMATIONS AT THE ENDS OF THE ELEMENTS
C AND DETERMINES THE NEW ELEMENT COORDINATES

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecee
SUBROUTINE DEFENDS
IMPLICIT REAL*8 (A-H,0-2)
COMMON /GEOMET/NNODES , NELEMS , ORDER, EPS, NORM1 ,NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/STRUCT/GE, XNU,HS (1920, 1920),GS (1920, 1440) ,GSHAT(1920)
COMMON /POSITION/XI(1080),YI(1080)
REAL*8 NODE,NORMI,NORMJ,JAC,SHAP(5),SHP(S)
INTEGER ORDER

C CALCULATE THE X AND Y DEFORMATION OF THE LEFT END OF ELEMENT J
C BY AVERAGING THE DEFORMATION AT ETA==1 E"EMENT J AND
C ETA=1 ELEMENT J-1

DO 20 J=1,2*NELEMS
UXL=0.0
UXR=0.0
UYL=0.0
UYR=0.0
CALL SHAPE (ORDER, -1.D0, SHAP)
CALL SHAPE(ORDER, 1.D0,SHP)
DO 10 L=1,O0RDER
JL=J *ORDER- (ORDER=L )
JR=(J-1)*ORDER~-(ORDER~L)
IF(J.BQ.1) JR=NELEMS*ORDER~(ORDER=-L)
IF(J.EQ.NELEMS+1) JR=2*NELEMS*ORDER~(ORDER-L)
UXL=UXL+SHAP (L) *GSHAT (JL)
UXR=UXR+SHP (L ) *GSHAT (JR)
UYL=UYL+SHAP (L) *GSHAT (4 *NNODES+JL)
UYR=UYR+SHP (L ) *GSHAT (4 *NNODES+JR)
10 CONTINUE
ELEM(J, 1)=ELEM(J, 1)+ (UXL+UXR)/2.
ELEM(J,2)=ELEM(J,2 )+ (UYL+UYR) /2.
20 CONTINUE
c
C CALCULATE THE RIGHT ENDS OF THE ELEMENTS BASED ON THEM
C EQUALING THE LEFT ENDS OF THE J+1 ELEMENT
c
DO 30 J=1,2*NELEMS
IF(J.EQ.NELEMS) THEN
ELEM(J, 3)=ELEM(1,1)
ELEM(J,4)=ELEM(1,2)
ELSE
1IF(J.EQ.2*NELEMS) THEN
ELEM(J,3)=ELEM(NELEMS+1, 1)
ELEM(J,4)=ELEM(NELEMS+1,2)
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ELSE
ELEM(J, 3)=ELEM(J+1,1)
ELEM(J,4 )=ELEM(J+1,2)

END IF
END IF
30 CONT INUE
(o]
C CALCULATE THE CONNECTING ELEMENT END POINTS
C

DO 40 I=1,NELEMS
ELEM( 2 *NELEMS+I, 1)=ELEM(1,3)
ELEM(2*NELEMS+I,2 )=ELEM(I,4)
ELEM(2*NELEMS+I, 3 )=ELEM(NELEMS+I, 3)
ELEM(2*NEL ZMS+I,4 )=ELEM{NELEMS+1,4)
40 CONTINUE
c
C CALCULATE THE NEW COORDINATES OF THE NODAL POINTS
c
DO 50 I=1,NELEMS*3
DO 50 L=1,0RDER
ETAA=-1.
ETAC=1.
ETAQ=NODE (L)
SHAP1=(ETAQ-ETAC)/(ETAA-ETAC)
SHAP2=(ETAQ-ETAA)/(ETAC-ETAA)
XI(I*ORDER-~(ORDER-L))=SHAP1*ELEM(I,1)+SHAP2*ELEM(I,3)
YI (I *ORDER=-(ORDER~L))=SHAP1*ELEM(I,2)+SHAP2*ELEM(I,4)
50 CONT INUE
RETURN
END
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c.'0.'.."t.""..t"'."'..".‘ft.'."".'.t."tt'.'t't.'t"'."

FFORM

THIS SUBROUTINE COMPUTES THE H AND G MATRICES POR THE
POTENT IAL FLOW

H MATRIX = INTEGRAL(SHAPE*QSTAR*JAC)DETA

G MATRIX = INTEGRAL(SHAPE*PHISTAR*JAC)DETA

noNnonNnnHhnNnonon

c"'.."""".....".""".t"'.'t"t""""".t"'.""'t'."

SUBROUTINE FFORM

implicit real*8 (a-h,o-z)

COMMON /POSITION/XI{(1080),YI(1080)
COMMON/GEOMET/NNODES , NELEMS, ORDER, EPS, NORMI, NORMJ , JAC, NODEC,
*NODPIN 1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/FLOW/H(240,240),G(240,240),0(240),GHAT(240)

real*8 ETA(12),WT(12),BTALN(10),WTLN(10),ETA2(10),WT2(10)
real®*8 SHAP(5),SHPLN2(5),SHPLN(5),SHAP3(S)

real*8 NODE,JAC,JACLN,JACLN2,JAC3,JACS,NORMI, NORMJ

INTEGER ORDER

ETA AND WT ARE NORMAL 12TH ORDER GAUSSIAN QUADRATURE
VALUES AND WEIGHTS

e e NeNe]

DATA ETA(1),ETA(2),ETA(3),ETA(4),ETA(5),ETA(6),ETA(7),
*ETA(8),ETA(9),ETA(10),ETA(11) ,ETA(12)/~.9815606340,~.9041172640,
*-.769902674d0,-.587317954d0,~.3678314940,-. 1252334140,
*.1252334140,.36783149430,.5873179540,.7699026740, .9041172640,
*.98156063d0/

DATA WT(1),WT(2),WT(3),WT(4),WT(5),WT(6),WT{7),WT(8),
*WT(9),WT(10),WwT(11,,Wwr(12)/.0471753440,.106939334d0,.1600783340,
*.20316743d0,.2334925440, .24914705d0, .249147054d0, .233492544d0,
*.2031674340,.16007833d0, .1069393340,.0471753440/

ETALN AND WTLN ARE 10TH ORDER LOGARITHMIC GAUSSI1AN QUADRATURE
VALUES AND WEIGHTS

naonon

DATA ETALN(1),ETALN(2),ETALN(3),ETALN(4),ETALN(S),ETALN(6),
*BTALN(7),ETALN(8),ETALN(9),ETALN(10)/.0090425940,.0539710540,
*.135311344d0,.2470516940, .38021171d0, .52379159d0, .665774724d0,
*.7941901940,.898161024d0, .96884798d0/

DATA WTLN(1),WTLN(2),WTLN(3),WTLN(4),WTLN(5),WTLN(6),WTLN(7),
*WTLN(8) ,WTLN(9) ,WTIN(10)/.1209547440,.18636310d0,.1956606640,
*.1735772340, . 13569597d0, .093647084d0, . 65578793840, .02715989340,
*.009515199240,.001638158630/

C ETA2 AND WT2 ARE 10TH ORDER GAUSSIAN QUADRATURE
C VALUES AND WEIGHTS

ODATA ETA2(1),ETA2(2),ETA2(3),ETA2(4),ETA2(5),ETA2(6),BTA2(7),
*ETA2(8),ETA2(9},BTA2(10)/-.9739065340,-.86506337d0, -.6794095740,
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*-.43339539d0,~. 1488743440, . 1488743440, .4333953940, .6794095740,
*,.865063374d0,.973906534d0/

DATA WT2(1),WT2(2),Wr2(3),WT2(4),WT2(5),WT2(6),WT2(7),WT2(8),
*WT2(9),WT2(10)/.0666713440, .1494513540,.21908636d0, .2692667240,
*,29552422d0, .295524224d0, .26926672d0, .2190863640, . 1494513540,
*.0666713440/

DATA PI/3.14159265d0/

C
C INITIALIZE MATRICES
C
DO 10 I=1,NNODES
DO 10 J=1,NNODES

G(1,J)=0.0
H(IoJ)‘OoO
10 CONTINUE
C
C BEGIN LOOPS ON NODE I AND ELEMENT J
C FOR EACH I ROW, PERFORM INTEGRATIONS OVER EACH ELEMENT J
C AROUND THE STRUCTURE. FILL IN ONE ROW AT A TIME
Cc
DO 1000 I=1,NNODES
"DO 1000 J=1,NELEMS

Cc
C DETERMINE IF THE INTEGRATION SHOULD BE SINGULAR
C 1.E. IS THE NODE I SOMEWHERE ON THE ELEMENT?
C ISING = 0 MEANS NODE I IS NOT ON ELEMENT J
C ISING = 1 MEANS NODE I IS FIRST NODE ON ELEMENT J
C ISING = 2 MEANS NODE 1 1S SECOND NODE ON ELEMENT J
C 1ISING = 3 ETC
C

ISING=0
DO 20 L=1,0RDER
NODES=J *ORDER- (ORDER-L )
IF(I.EQ.NODES) ISING=L
20 CONTINUE
IP(ISING.EQ.Q0) THEN

C & & &8 % & ¢ 4 ¢ 2 & % ¢ 8 % & & & % & & &8 ¢ 4 ¢ 8 & ¢ %0«
C THE INTEGRATION IS NOT SINGULAR
C PERFORM 12TH ORDER GAUSSIAN QUADRATURE
C " ® & & ¢ a0 ¢ # & ¢ & ¢ & 4 & &8 % ¢ 0 ¢ ¢ & ¢ 62 ¢ 00w
DO 50 K=1,12
Cc
€ CALCULATE THE A .ND Y COORDINATES OF THE QUADRATURE POINT
C AND CALCULATE DISTANCE FROM NODE I TO QUAD POINT
c
C CALCULATE SHAPE FUNCTIONS AT QUAD POl.T (ETA(K)) BASED ON GEOMETRY
C NODES AT -1,0,1
C
ETAA=-1,
ETAC=1.

ETAQ=ETA (K)
SHAP(1)=(ETAQ-ETAC)/(ETAA-ETAC)
SHAP(2)=(ETAQ-ETAA) /(ETAC-ETAA)
X=SHAP( 1)*ELEM(J, 1)+SHAP(2 ) *ELEM(J, 3)
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YuSHAP (1) *ELEM(J,2)+SHAP(2) *ELEM(J,4)
RI=XI(1)-X
RI=YI(I)-Y
R=SQRT (RI®*RI+RJ*RJ)

C CALCULATE PHI* AND Q*

CALL JACOBIAN(J,ETA(K))
PHISTAR=dlog(1/R)
D=RI*(NORMI)+RJ*(NORMJ)
QSTAR=(D/(R*R))

CALCULATE TERMS OF H AND G MATRICES
ROW CORRESPONDS TO NODE I
COLUMN CORRESPONDS TO GLOBAL NUMBER OF ELEMENT NODES

0onNnOoo0Oan

CALL SHAPE (ORDER,ETA(K),SHAP)
DO 35 L=1,0RDER

JJ IS GLOBAL NUMBER OF ELEMENT NODES

FOR EXAMPLE; NODES 1,2,3 ON ELEMENT 1 A
NODES 1,2,3 ON ELEMENT 2 A
NODES 1,2,3 ON ELEMENT 3 A

nonoonoo0o0n
fER
~N b -

JJ=J*ORDER-(ORDER~L)

G(I,JJ)=G(1,JJ)+SHAP(L)*PHISTAR*JAC*WT(K)/(2.*P1)

H(I,J3)=H(1,3J)+SHAP(L)*QSTAR®*JAC*WT(K)/(2.*P1)
35 CONTINUE

50 CONTINUE
ELSE

C * & & % & ¢ 8 ¢ # ¢ % & 0 ¢ & & & 4 &8 & 680 & % & ¢ 2002 ¢
c
C THE INTEGRAL IS SINGULAR IN THE INSIDES OF ELEMENT J
o
C DETERMINE THE ETA BAR LOCATION OF SINGULARITY
C

SINGUL=NODE (ISING)
c
C CALCULATE TERMS OF G MATRIX
C
C

X2X 1=ELEM(J, 3 )-ELEM(J, 1)
Y2Y1=ELEM(J,4)-ELEM(J,2)
PLENG=SQRT(X2X1*X2X 1+Y2Y 1*Y2Y 1)
DO 350 X=1,10
BET=SINGUL+(1.-SINGUL ) *ETALN(K)
CALL SHAPE(ORDER,ET,SHPLN2)
CALL JACOBIAN(J,ET)
JACLN2=JAC
ET=SINGUL+.5%( 1. -SINGUL)*(ETA2(K)+1.)
CALL SHAPE(ORDER,ET,SHAP)
CALL JACOBIAN(J,ET)
JAC4=JAC
BT=SINGUL-(SINGUL+1.)*ETALN(K)
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CALL SHAPE(ORDER,ET,SHPIN)

CALL JACOBIAN(J,ET)
JACLN=JAC
ET=SINGUL~.5*( 1. +SINGUL) *(ETA2(K)+1.)
CALL SHAPE(ORDER,BT,SHAP3)
CALL JACOBIAN(J,ET)
JAC3=JAC
DO 385 L=1,0RDER
JJ=J *ORDER- (ORDER~L)
TERM 1=SHPLN (L ) *JACLN*( SINGUL+1. ) *WTLN(K) /(2. *P1)
TERMI=SHAP3 (L) *JAC3*
dlog(PLENG*ABS(1.+SINGUL)/2.) *(SINGUL+1.)
*, S*WwT2(K)/(2.%*P1)
TERM2=SHPLN2(L )*JACLN2*( 1. -SINGUL ) *WTLN(K)/(2.*P1)
TERM4=SHAP (L) *JAC4*
dlog{PLENG*ABS (SINGUL=-1.)/2.)*(1.=SINGUL)
*,.529T2(K)/(2.*PI)
G(1,JJ)=G(1,JJ)+TERM1+TERM2~-TERM3-TERM4
385 CONTINUE
350 CONTINUE
END IF
1000 CONTINUE
RETURN
END
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C
C
Cc
c
C
C

FLOWOUT

THIS SUBROUTINE OUTPUTS THE POTENTIAL FLUID INFORMATOINS

(2223222222 223222 2222222222222 2222232222 23R 2 2222222222222 22ZX2)

SUBROUTINE FLOWOUT

implicit real*8 (a-h,o-z)

COMMON /GEOMET/NNODES , NELEMS, ORDER, EPS, NORMI , NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(S5),ELEM(360,4)
COMMON/FLOW/H(240,240),G(240,240),0(240) ,GHAT(240)

COMMON /POTEN /VINF ,ALPHA,VI,VJ, PINF, RHOINF,GAMMA ,MINF2, NODEP
COMMON/VELOCIT/UVEL(240),VVEL(240) ,XFORC(480) ,YFORC(480),
*XOLD(480),YOLD(480)

REAL*8 NORMI,NORMJ,JAC,NODE,GAMMA, MINF 2

INTEGER ORDER

WRITE(6, 1) VINF,ALPHA,VI,VJ,MINF2**. 5
FORMAT(//,22X,'***** FLOW INFORMATION *#e#e*' / 24Y,
. *** ON OUTER BOUNDARY **',/,10X,'Vinfinity = °*,F10.4,
* SX,'ALPHA = ',F10.4,/,5X,'VI = ',F10.4,10X,'VJ = ',F10.4,
* 10X,°'MINF = ',F10.4,//)
WRITE(6,2)
FORMAT ( 1X, "POTENTIAL', 3X, 'U VEL',5X,'V VEL',4X,'VELOCITY',
*5X,'CP',6X,'X FORCE',3X,'Y FORCE',//)
DO 5 I=1,NNODES
VEL=SQRT(UVEL(I)**2+VVEL(1)**2)
CP=1,-(VEL/VINF)*+2
WRITE(6,3) GHAT(I1),UVEL(I),VVEL(I),VEL,CP,XFORC(I),YFORC(I)
FORMAT(7F10.4)
CONTINUE

WRITE FORCE ON INSIDES

VELVENT=SQRT (UVEL (NODEP ) **2+VVEL (NODEP)**2)
CPVENT=1.~-(VELVENT/VINF)**2
PVENT=.5*RHOINF*VINF*VINF*CPVENT
WRITE(6,f, PVENT,NODEP
FORMAT(//,22X,'#**#¢ PORCES ON INNER SURFACE fw#*tee’,

*/,10X, *INNER PRESSURE 1S = ',F10.4,/,

*10X, '"VENTED NODE 1S = *,13,//)

WRITE(6,7)

FORMAT(2X, *X PORCE',3X,'Y PORCE',//)

WRITE(6,8) (XFORC(I),YFORC(I),I=NNODES+1,2*NNODES)
FORMAT(2F10.4)

RETURN

END
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FLUIDIN

THIS SUBROUTINE READS IN THE INFORMATION REQUIRED TO
CALCULATE THE POTENTIAL FLUID DATA

INPUT:
VINF = FLOW VELOCITY AT INFINITY
ALPHA = FLOW ANGLE OF ATTACK
PINF = PRESSURE AT INFINITY
RHOINF = DENSITY AT INFINITY
GAMMA = GAMMA
NODEP = NODE AT WHICH TO VENT PRESSURE TO INSIDE

OUTPUT :
VI = X-COMPONENT OF FLOW VELOCITY
VJ = Y-COMPONENT OF FLOW VELOCITY
MINF2 = MACH AT INFINITY SQUARED

OO OONONOOOOO0O0ON0ON

C..'.'t...Q"i..".t.'.'.'*t't'l'i."'.t.t.tt.'ti't."t..t't.i.."

SUBROUTINE FLUIDIN
implicit real*8 (a-h,o-2)
COMMON /POTEN/VINF,ALPHA,V1 ,VJ,PINF, RHOINF,GAMMA , MINF2, NODEP
real*8 GAMMA,MINF2
C
C READ IN Vinfinity AND ANGLE OF ATTACK
C CONVERT Vinf TO X AND Y (I AND J) COMPONENTS

READ(5,*) VINF,ALPHA
1 FORMAT(2F10.4)
ALFP=ALPHA®0.017453293
VI=VINF*COS(ALF)
VJIsVINF*SIN(ALF)
c
C READ IN Pinfinity, RHOinfinity and GAMMA
C
READ(S,*) PINF,RHOINF,GAMMA
2 FORMAT (3F10.4)
MINF2=(VINF*VINF *RHOINF)/(GAMMA*PINF)
c
C READ IN NODE AT WHICH TO VENT PRESSURE TO INSIDE
c
READ(S,*) NODEP
3 FORMAT(12)
RETURN
END
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GEOMIN

THIS SUBROUTINE READS IN THE GEOMETRY INFORMATION
OF THE STRUCTURE

INPUT:

ORDER = ORDER OF POTENTIAL AND Q MODELING

NELEMS = NUMBER OF ELEMENTS ALONG OUTSIDE OF STRUCTURE
TOTAL NUMBER OF ELEMENTS 1S 2*NELEM BECAUSE SAME NUMBER
ALONG INSIDE OF STRUCTURE

EPS = DISTANCE FROM END OF ELEMENT TO THE END NODES

NODEC = NODE TO BE REPLACED BY CONTINUITY

NODPIN 1,NODPIN2 = NODES TO BE PINNED

OUTPUT:
ORDER = NUMBER OF NODES ON EACH ELEMENT
NNODES = NUMBER OF NODES
NODE(I) = ETA POSITION OF NODE I WITHIN EACH ELEMENT
XI,YI = X,Y LOCATION OF NODE I

(AR AR 222222222 R 2222222222222 2222222222 dRX222 222

SUBROUT INE GEOMIN

implicit real*8 (a-h,o-2)

COMMON /GEOMET /NNODES , NELEMS , ORDER,EPS , NORMI , NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(S),ELEM(360,4)
COMMON/POSITION/XI(1080),YI(1080)

real*s NORMI,NORMJ,JAC,NODE

INTEGER ORDER

DATA PI/3.1415926540/

NOO0O0O00ON0N0O0O0N0N0OO0O0O0O00O0000

READ IN ORDER OF FIT AND NUMBER OF ELEMENTS ALONG OUTSIDE SURFACE

o000

READ(S5,*) IORDER,NELEMS
ORDER=IORDER+1
NNODES=ORDER*NELEMS

CALL SURFACE GEOMETRY GENERATION TO GET LEFT AND RIGHT
X,Y LOCATIONS OF OUTSIDE AND INSIDE PANELS

QOO0 n0n

CALL SURF

DETERMINE LEFT AND RIGHT X,Y OF LINKING PANELS
LINK OUTSIDE BOUNDARY WITH INSIDE

(e el e N3]

DO 10 I=1,NELEMS
ELEM(2*NELEMS+I, 1)=ELEM(I,3)
ELEM(2*NELEMS+I,2)=ELEM(I,4)
ELEM(2*NELEMS+I, 3 )=ELEM(NELEMS+I, 3)
ELEM(2*NELEMS+I,4 )=ELEM(NELEMS+I,4)
10 CONTINUE
c
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READ IN DISTANCE OF END NODES TO ELEMENT CORNERS

on

READ(S,*) EPS
IF(ORDER.EQ.1) EPS=1.

CALCULATE THE ETA POSITION OF THE NODES WITHIN THE ELEMENT
NODE(1) AND NODE(ORDER) ARE EPS FROM +/- 1. OTHER NODES
ARE SPACED EQUALLY WITHIN THE REMAINING SPACE

00000

IF(ORDER.EQ. 1) THEN
NODE (1)=0.
ELSE
SPACE=({2.-2.*EPS)/{ORDER-1.)
NODE (1)=-(1.~-EPS)
NODE (ORDER )==NODE (1)
IF(ORDER.GT.2) THEN
DO 20 I=2,0RDER-1
NODE (1 )=NODE (I-1)+SPACE
20 CONTINUE
END IF
END IF
c
C CALCULATE THE X,Y POSITION OF EACH NODE
c
DO 40 I=1,NELEMS*3
DO 40 L=1,0RDER
ETAA=-1.
ETAC=1.
ETAQ=NODE (L)
SHAP 1=(ETAQ-ETAC ) /( ETAA-ETAC)
SHAP2= (ETAQ-ETAA )/ (ETAC-ETAA)
XI(I*ORDER-(ORDER-L))=SHAP1*ELEM(I, 1)+SHAP2*ELEM(I,3)
YI (I*ORDER- (ORDER-L) )=SHAP1*ELEM(I,2)+SHAP2*ELEM(I,4)
40  CONTINUE

READ IN THE NODE OF EACH ELEMENT TO BE REPLACED BY THE
CONTINUITY EQUATION

a0ono

READ(S5,*) NODEC

READ IN NODES TO BE PINNED

o000

READ(5,*) NODPIN1,NODPIN2
RETURN
END
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C

C GouTrrPuT

c

C THIS SUBROUTINE OUTPUTS THE ELEMENT GEOMETRY COORDINATES

o

c’..t'....'.""..'.".C"t......""'t.t't'tt""ii'."'.'t"."'t'.'

10

20

25
30

SUBROUTINE GOUTPUT(ITER)

implicit real*8 (a-h,o0-z)

COMMON /GEOMET/NNODES , NELEMS, ORDER, EPS, NORMI, NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/POSITION/XI(1080),YI{1080)

real*8 NORMI,NORMJ,JAC,NODE

INTEGER ORDER

WRITE(6, 10) NELEMS, 3*NELEMS, ORDER,NNODES, 3*NNODES,EPS, ITER-1

FORMAT(//,22X, ' #s***GEOMETRY INFORMATION#*®e®=®' //,

*10X, '"NUMBER OF ELEMENTS ON OUTSIDE = ',I13,

*10X, ‘TOTAL NUMBER OF ELEMENTS = ',I3,

*/,10X, 'ORDER OF MODELING = ',13,

*/,10X, "NUMBER OF NODES ALONG OQUTSIDE = ',I13,

*10X, '"TOTAL NUMBER OF NODES = ’',13,

*/,10X, *DISTANCE FROM END NODES',

** T0 CORNER = ',F10.4,/,10X,' ITERATION NUMBER = *',12,/)

WRITE(6,20)

FORMAT(//,5X, '"ELEMENT COORDINATES',/,6X, ‘ELEMENT',7X, 'X-LEFT',

*7X, 'Y~-LEFT*,6X, 'X~-RIGHT', 6X, '"Y-RIGHT',//)

DO 30 I=1,NELEMJ*2
WRITE(6,25) I,ELEM(1,1),ELEM(1,2),ELEM(I,3),ELEM(I,4)
FORMAT(9X,13,5X,F10.4,3(3X,F10.4))

CONTINUE

RETURN

END
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GSHATT

THIS SUBROUTINE MOVES THE CONNECTING ELEMENT TERMS OF THE GS
MATRIX OVER TO THE HS MATRIX AND THEN CALCULATES GSHAT

oOnNaOonoon00n

c"@."..'tt'.""."..-'t'.t'i.i.."...‘....'t."i'.i.".".t..'.tt

SUBROUTINE GSHATT

implicit real*s (a-h,o-z)
COMMON/GEOMET/NNODES , NELEMS, ORDER, EPS , NORMI ,NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/VELOCIT/UVEL(240),VVEL(240) ,XFORC(480),YFORC(480),
*XOLD(480),YOLD(480)
COMMON/STRUCT/GE , XNU,HS (1920, 1920),GS(1920, 1440) ,GSHAT(1920)
INTEGER ORDER

REAL*8 NODE,NCRMI,NORMJ,JAC

(o
C MOVE THE CONNECTING ELEMENT TERMS OF THE GS MATRIX OVER TO
C THE HS MATRIX
c
DO 10 I=1,8*NNODES
DO 10 J=1,NNODES
HS(1,3*NNODES+J )==GS(1,2*NNODES+J)
HS(1,7*NNODES+J )=-GS (I, S5*NNODES+J)
10 CONTINUE
c
C CALCULATE THE GSHAT MATRIX
C REMEMBER THE COLUMNS OF GS CORRESPONDING TO THE CONNECTING
C ELEMENTS DO NOT COUNT
(o}
C SUBTRACT OLD TRACTIONS (XOLD,YOLD) FROM NEW TRACTIONS (XFORC,YFORC)
C THIS PRE-STRESSES THE STRUCTURE TO ACCOUNT FROM THE DEFORMATION AND
C STRESS DUE TO THE LAST PASS
(o
PO 20 I=1,8*NNODES
GSHAT(I1)=0.0
DO 20 J=1,2*NNODES
GSHAT(1)=GSHAT(I)+GS(I,J)*(X.  RC(J)-XOLD(J))+
* GS{I,3*NNODES+J)*(YFORC(J)-YOLD(J))
20 CONTINUE
RETURN
END
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c

C HDIAG

C

C THIS SUBROUTINE CALCULATES THE DIAGONAL TERMS OF THE H MATRIX
C

(ol AR AL AL A A SRRl AR Rl Al dddd i A d A 2 A2 A R R A2 222222222 R22X22 2]

SUBROUTINE HDIAG

implicit real*a (a-h,o-~-z)

COMMON /GEOMET/NNODES , NELEMS, ORDER, EPS, NORMI,NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(S5),ELEM(360,4)
COMMON/FLOW/H(240,240),G(240,240),Q(240) ,GHAT(240)

integer order

real®*8 JAC,NORMI,NORMJ,NODE

EXTERNAL FLOW (UNBOUNDED INFINITE DOMAIN)
HII==SUM(HIJ)+1

NnoOonon

DO 10 I=1,NNODES
SUM=0.0
DO 3 J=1,NNODES
IF(I.NE.J) SUM = SUM+H(I,J)
3 CONTINUE
H(I,1)=(-SUM+1.)
10 CONTINUE
RETURN
END
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HGQOUT

H, G, Q, GHAT

(2322222322222 2232223222222 X022 A2 22222222 222RRR22R2222R2dkd 2t

Cc
C
C
C THIS SUBROUTINE OUTPUTS THE POTENTIAL FLOW MATRICES
Cc
Cc
C

SUBROUTINE HGQOUT

implicit real*8 (a-h,o-~z)

COMMON /GEOMET/NNODES , NELEMS, ORDER, EPS , NORM1 , NORMJ, JAC, NODEC,
*NODP1i 1, NODPIN2,NODE(5) ,ELEM(360,4)
COMMON/FLOW/H(240,240),G(240,240),0Q(240) ,GHAT(240}

real*s NORMI,NORMJ,JAC, NODE

INTEGER ORDER

C
C

WRITE(6, 1)

1 FORMAT(//,22X, ' *****pPOTENTIAL FLOW MATRICES®*#*www' ,
* 22X,'** FOR OUTER SURFACE BOUNDARY **',//)

WRITE(6,2)
2 FORMAT (5X, 'H MATRIX',/)

DO 10 I=1,NNCDES

WRITE(6,3) (H(I,J),J=1,NNODES)

3 FORMAT(/13(8(F10.4,5X),/))
10 CONTINUE

WRITE(6,11)
11 FORMAT(// ,5X, 'G MATRIX',/)

DO 20 I=1,NNODES

WRITE(6,12) (G(1,J),J=1,NNODES)

12 FORMAT(/13(8(F10.4,5X),/))
20 CONTINUE

WRITE(6,21)
21 FORMAT(//,5X,'Q MATR1X',/)

WRITE(6,22) (Q(I),1=1,NNODES)

22 FORMAT(13(8/F10.4,5X),/))

WRITE(6,31)
3 FORMAT(//,5X, 'GHAT MATRIX',/)

WRITE(6,32) (GHAT(I),I=1,NNODES)
32 FORMAT(13(8B(F10.4,5X),/))
RETURN
END
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HSDIAG

THIS SUBROUTINE CALCULATES THE DIAGONAL TERM OF THE HS MATRIX

HI1 = -SUM(HI1J)

FOR THE HXX AND HYY TERMS ONLY BECAUSE CXY=CYX=0. AND THEREFORE
THE DIAGONAL TERMS OF HXY AND HYX ARE EQUAL TO THEMSELVES

o000 0n0nn

(A S22 222 AR SRR 22t d sl il idssisl sl sNl RS RS

SUBROUTINE HSDIAG

implicit real*8 (a-h,o0-2)
COMMON/GEOMET/NNODES, NELEMS, ORDER, EPS, NORM1 ,NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/STRUCT/GE , XNU,HS (1920, 1920),GS( 1920, 1440),GSHAT(1920)
real*8 NORMI,NORMJ,JAC,NODE

INTEGER ORDER

C SUM FOR THE OUTER, INNER AND CONNECTING ROWS

DO 10 I=1,3*NNODES
SUMXX=0.0
SUMYY=0."
DO 5 J=1,3*NNODES
IF(I.NE.J) THEN
SUMXX=SUMXX+HS(I1,J)
SUMYY=SUMYY+HS (4 *NNODES+I, 4*NNODES+J)
END IF
5 CONTINUE
HS(I,I1)=-SUMXX
HS (4 *NNODES+1,4*NNODES+1 )=-SUMYY
10 CONTINUE
C
C CONTINUE TO SUM FOR THE ADDITIONAL SET O CONNECTING ROWS
C
DO 20 I=3*NNODES+1,4*NNODES
II=I-NNODES
SUMXX=0.0
SUMYY=0.0
DO 15 J=1, 3*NNODES
IF(II.NE.J) THEN
SUMXX=SUMXX+HS(I,J)
SUMYY=SUMYY +HS (4 *NNODES+1,4 *NNODES+J)
END IF
15 CONT INUE
HS(I,11)=-SUMXX
HS (4 *NNODES+1,4*NNODES+11)=-SUMYY
20 CONTINUE
RETURN
END
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JACOBIAN

THIS SUBROUTINE CALCULATES THE JACOBIAN AND OUTWARD NORMAL
FOR THE POINT UNDER CONSIDERATION

INPUT:
J = ELEMENT ON WHICH POINT IS LOCATED
ETA = POINT WHERE JACOBIAN AND NORMAL 1S CALCULATED

OUTPUT:

JAC = JACOBIAN

NORMI = X COMPONENT OF NORMAL
NORMJ = Y COMPONENT OF NORMAL

nonNononOnNaOOn0n00On0n
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SUBROUTINE JACOBIAN(J,ETA)

implicit real*8 (a-h,o-z)

COMMON /GEOMET/NNODES , NELEMS , ORDER, EPS, NORMI ,NORMJ, JAC, NUDEC,
*NODPIN1,NODPIN2,NODE(S5),ELEM(360,4)

real®*8 NORMI,NORMJ,JAC, NODEB

INTEGER ORDER

C
C ASSUME FLAT PANEL
C

DN1=-.5

DN3=,5

DXDN=DN 1*ELEM(J, 1 }+DN3*ELEM(J, 3)
DYDN=DN1*ELEM(J,2)+DN3I*ELEM(J,4)
JAC=SQRT (DXDN *DXDN+DYDN *DYDN )
NORMI=~DYDN/JAC

NORMJ=DXDN/JAC

RETURN

END
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PRESSURE

C
C
C
C THIS SUBROUTINE CALCULATES THE COEFFICIENT OF PRESSURE (CP)
C AND THE EXTERNAL FORCES (XFORC,YFORC) ON EACH NODE

c

C

L A2 S22 2222222222222 222222222222 2222222222222 22222222222 XXX ]

SUBROUTINE PRESSURE
implicit real*s (a-h,o-2z)
COMMON/GEOMET/NNODES , NELEMS, ORDER, EPS, NORMI, NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5) ,ELEM(360,4)
COMMON /POTEN/VINF,ALPHA,VI,VJ, PINF, RHOINF,GAMMA,MINF2,NODEP
COMMON /VELOCIT/UVEL(240),VVEL(240),XFORC(480),YFORC(480),
*XOLD(480),Y0OLD(480)
REAL*8 JAC,NORMI,NORMJ,GAMMA,MINF2,NODE
INTEGER ORDER
C
C STORE THE OLD VALUES OF TRACTIONS
(o
DO 10 I=1,2*NNODES
XOLD(1 )=XFORC(I1)
YOLD(I)=YFORC(1)
10 CONTINUE
(o
C INITIALIZE XFORC,YFORC
C
DO 15 I=t,2*NNODES
XFORC(1)=0.0
YFORC(1)=0.0
15 CONTINUE

CALCULATE PRESSURE AND X,Y COMPONENTS OF PRESSURE FOR OUTER SURFACE
XFORCE = NI*P, YFORC = NJ*P

s s e N2l

DO 20 J=1,NELEMS
DO 20 K=1,0RDER
JJJ=J *ORDER-(ORDER~K)
VEL=SQRT(UVEL(JJJ ) *UVEL(JJJ)+VVEL(JJJ)*VVEL(JJ3J))
CP=1.-(VEL/VINF)®**2
P=0.5*RHOINF*VINF*VINF*CP
CALL JACOBIAN(J,NODE(K))
XFORC(JJJ )=XFORC(JJJ)+P*{NORMI)
YFORC(JJJ )=YFORC(JJJ ) +P*(NORMJ)
20 CONTINUE

CALCULATE PRESSURES FOR INSIDE BOUNDARY WHERE INTERNAL PRESSURE
EQUALS PRESSURE AT VENTED NODE ON OUTER SURFACE

O0o0On0n

VELVENT=SQRT(UVEL(NODEP) *UVEL (NODEP ) +VVEL(NODEP ) *VVEL (NODEP) )
CPVENT=1.-(VELVENT/VINF)**2
PIN=.5*RHOINF*VINF*VINF*CPVENT
DO 30 J=NELEMS+1,2*NELEMS
DO 30 K=1,0RDER
JJJ=J *ORDER- (ORDER~K)




30

CALL JACOUBIAN(J,NODE(K))
XFORC(JJJ })=XFORC(JJJ ) +PIN*{ -NORMI )
YFORC(JJJ )=YFORC(JJJ ) +PIN®*(-NORMJ)
CONTINUE
RETURN
END
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QF LOW

THIS SUBROUTINE CALCULATES THE BOUNDARY CONDITION VECTOR,Q
USING Q = =-n . Vinf

NOTE THAT SINCE THE OUTWARD NORMALS TO THE FLUID FLOW POINT INTO THE
BODY THE NORMAL CALCULATED IN JACOBIAN SUBROUTINE ALREADY HAS THE
PROPER SIGN (~=N)

NOOOOO0OO0OOO0

C..'....'t."i't'.l."."..‘.t.t.!t."t.t.."'.."t.""'."..'t.tt'.'t"t"'

SUBROUTINE QFLOW

implicait real*8 (a-h,o-z)

COMMON /GEOMET/NNODES, NELEMS , ORDER, EPS, NORMI ,NORMJ,JAC, NODEC,
*NODPIN1,NODPIN2,NODE(S),ELEM(360,4)
COMMON/POTEN/VINF,ALPHA,VI ,VJ,PINF,RHOINF,GAMMA , MINF2,NODEP
COMMON/FLOW/H(240,240),G(240,240),Q(240),GHAT(240)

INTEGER ORDER

real®*8 JAC,NORMI,NORMJ,GAMMA, MINF2,NODE

EXTERNAL FLOW PROBLEM
O=NORMAL*VINF

0oOn0no

DO 5 I=1,NNODES
Q(1)=0.0
S CONT INUE
DO 10 J=1,NELEMS
DO 10 L=1,0RDER
JJ=J*ORDER~ (ORDER=-L)
CALL JACOBIAN(J,NODE (L))
Q(IJT J=Q(JJ )+ (NORMI*VI+NORMJI*VJ)
10 CONTINUE
RETURN
END
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SFORM

ELASTIC STRUCTURE

1222222222222 22222222222 222222222 222222222222 222222 X222 XX2X22 2]

C
C
C
C THIS SUBROUTINE CALCULATES THE H AND G MATRICES FOR THE
Cc
C
C

SUBROUTINE SFORM

implicit real*8 (a-h,o0-2z)

COMMON /GEOMET/NNODES , NELEMS , ORDER, EPS,NORMI ,NORMJ,JAC,NODEC,
*NODPIN 1,NODPIN2,NODE(S),ELEM(360,4)
COMMON/STRUCT/GE, XNU,HS (1920, 1920),GS( 1920, 1440) ,GSHAT(1920)
COMMON /POSITION/XI(1080),YI(1080)

COMMON /VELOC 1T/UVEL(240) ,VVEL(240) ,XFORC(480),YFORC(480),
*XOLD(480),YOLD(480)

REAL*8 ETA(12),WT(12),ETALN(10),WITLN(10),ETAS(8),WTS(8),
*ETA2(10),WT2(10)

REAL®*8 SHAP(5),SHAP2(5),SHAPLN(5),SHAPLN2(5),SHAP3(5),

. SHAP4(5S)

REAL*8 NODE,JAC,JAC1,JAC2,JAC3,JAC4,JACLN,JACLN2,NORMI,NORMJ,
*NORMI 1,NORMJ 1, NORMI 2, NORMJ 2

INTEGER ORDER

C ETA AND WT ARE 12TH ORDER GAUSSIAN QUADRATRUE VALUES AND WEIGHTS

OATA ETA(1),ETA(2),ETA(3),ETA(4),ETA(S),ETA(6),ETA(7),
*ETA(8),ETA(9),ETA(10) ,ETA(11} ,ETA(12)/~-.98156063d0,~.9041172640,
*-.76990267d40,~.587317954d0,-.36783149d0, -. 1252334140, .125233414d0,
*.3678314940,.5873179540,.769902674d0,.9041172640, .981560634d0/

DATA WT(%V),WT(2),WT(3),WT(4),WT(5),WT(6),WT(7),WT(8),WT(9),
*WT(10),WT(11),WT(12)/.0471753d0,.1069393340,.1600783340,
*.203167434d0,.233492544d0, .2491470540, .2491470540, .2334925440,
*.20316743d0,.1600783340,.10693933d0,.04717534d0/

ETALN AND WTLN ARE 10TH ORDER LOGARITHMIC GAUSSIAN QUADRATURE
VALUES AND WEIGHTS

0O00a0

DATA ETALN(1),ETALN(2),ETALN(3),ETALN(4) ,ETALN(5),ETALN(6),
*ETALN(7),ETALN(8),ETALN(9),ETALN(10}/.0090425940,.0539710540,
*.135311344d0,.2470516940, .380211714d0, .5237915940, .6657747240,
*.7941901940,.89816102d0, . 9688479840/

DATA WTLN(1),WTLN(2),WTL}N(3),WTLN(4),WTLN(S),WTLN{(6),WTLN(7),
*WTLN(8),WTLN(9),WTLN(10)/.1209547440, .186363104d0,.1956606640,
*.1735772340,.1356959740, .09364708d0, .05578793840,.0271598940,
*.009515199240,.001638158640/

ETAS AND WTS ARE 8TH ORDER GAUSSIAN VALUES AND WEIGHTS FOR
1/R SINGULAR INTEGRALS

o000

DATA ETAS(1),ETAS(2),ETAS(3),ETAS(4),ETAS(5),ETAS(6),ETAS(7),
*ETAS(8)/-.00324250d0,.05349077d0,.17782733d0,.3507178840,
*.5458195s5d0,.73342708d0, .88498305d0, .9774543840/
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DATA WTS(1),WTS(2},WTS(3),WTS(4),WTE(5),WTS(6),WTS(7),WTS(8)
*/-3.93063681d0,1.73740631d0, .8576345440, .5383607740,
*,35975759d0,.2372676940,.1414622840,.05874761d0/

C ETA2 AND WT2 ARE 10TH ORDER GAUSSIAN QUADRATURES

Cc

c
C
(o

c

10

15

DATA ETA2(1),ETA2(2),ETA2(3),ETA2(4),ETA2(5),ETA2(6),ETA2(7),
*ETA2(8),ETA2(9),ETA2(10)/-.973906534d0,-.8650633740,~-.6794095740,
*-.4333953940, -. 1488743440, .1488743440,.433395394d0, .679409574d0,
*,.86506337d0,.973906534d0/

DATA WT2(1),WT2(2),WT2(3),WT2(4),WT2(5),WT2(6),WT2(7),WT2(8),
*WT2(9),WT2(10)/.0666713440,.1494513540, .219086364d0,.2692667240,
*.29552423d0,.295524234d0, .269266724d0, .21908636d40, . 1494513540,
*.0666713440/

DATA Pl/3.14159265d0/

INITIALIZE MATRICES

DO 15 I=1,B*NNODES
DO 10 J=1,6*NNODES
Gs(1,J)=0.0
CONTINUE
DO 15 J=1,8*NNODES
HS(1,J)=0.0
CONTINUE

C BEGIN LOOPS ON NODE I AND ELEMENT J

C

OO0 0O0n

DO 1000 IIl=1,4
DO 1000 II=1,NELEMS
DO 1000 K=1,ORDER
I=(III-1)*NNODES+II*ORDER-{ORDER~-K)
IF(II1.EQ.4) THEN
INODE=2*NNODES+II*ORDER=-(ORDER-K )
ELSE
INODE=1
END IF
DO 1000 L=1,4
IF(II11.EQ.4) THEN
J=NELEMS*(L=1)+II+1
IF(L.EQ.4.AND.II.NE.NELEMS) J=2*NELEMS+II
IF(I1.EQ.NELEMS) J=NELEMS*(L-1)+1
IF(II.EQ.NELEMS.AND.L.EQ.4) J=3*NELEMS
ELSE
J=NELEMS*(L-1)+I1I
IF(L.EQ.4) J=2*NELEMS+{II-1)
IP(L.EQ.4.AND.II.EQ.1) J=3*NELEMS
END IF

DETERMINE IF THE INTEGRATION SHOULD BE SINGULAR
I.E. IS THE NODE I SOMEWHERE ON THE ELEMENT J

ISING = 0 MEANS THE NODE I 1S NOT ON ELEMENT J
ISING = 1 MEANS THE NODE 1 IS THE FIRST NODE ON ELEMENT J
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sz e el

ISING = 2 MEANS THE NODE I IS THE SECOND NODE ON ELEMENT J
ISING = 3 ETC

ISING=0

DO 20 LL=1,0RDER
NODES=J *ORDER~ (ORDER~-LL)
IF(INODE.EQ.NODES) 1SING=LL

20 CONTINUE

IF(I1SING.EQ.0) THEN

L 2N BN 2N JNE 2N IR I NN JNE NN NN SN NN NN JEE JEE BEK BEN IR JEE 2N IR NN BN NN DEN NN BEE BEE 2R NN

THE INTEGRATION IS NOT SINGULAR
PERFORM 12TH ORDER GAUSSIAN QUADRATURE

* ® * ® & & & ¢ & ¢ & B ® & 6 & F & O T ERN S S EC P

DO 50 KX=1,12

CALCULATE THE X AND Y COORDINATES OF THE QUADRATURE POINT
AND CALCULATE THE DISTANCE FROM NODE I TO QUAD POINT

ETAA==1,

ETAC=1.

ETAQ=ETA (KK )
SHAP(1)=(ETAQ-ETAC)/(ETAA-ETAC)
SHAP(2 )= (ETAQ-ETAA)/(ETAC-ETAR)
X=SHAP(1)*ELEM(J, 1)+SHAP(2)*ELEM(J,3)
Y=SHAP(1)*ELEM(J,2)+SHAP(2)*ELEM(J,4)
RI=X~-XI (INODE)

RJI=Y=-YI(INODE)

R=SQRT(RI*RI+RJI*RJ)

CALCULATE U* AND P*

CALL JACOBIAN(J,ETA(KK))
IF(L.EQ.1.0R.L.EQ.3) THEN
NORMI==NORMI
NORMJ =~-NORMJ
END IF
TERM1=(~-1.)/(8.*PI*GE*(1.-XNU))

NOTE THAT ON THE LEFT CONNECTING ELEMENT (L=4) Qij=-Qji
SO THAT THE GS TERM SHOULD BE NEGATIVE

IF(L.EQ.4) TERM1==TERMI
USTXX=TERM1*((3.-4.*XNU)*dlog(1./R)

* +(RI/R)**2)

’ USTXY=TERM1*((RI*RJ)/(R*R))
USTYX=USTXY
USTYY*TERM1%((3.-4.*XNU)*dlog(1./R)

. +{RJ/R)**2)

DRDN=(NORMI*RI+NORMJ*RJ)/R
TERM2=(=1.)/(4.*PI*(1.~XNU)*R)
PSTXX=TERM2*(DRDN*((1.~2.%XNU)+

* 2.*(RI/R)**2))
PSTXY=TERM2*(DRDN*2.*(RI*RJ)/(R*R)
* =(1.=2.*XNU)*( (RI*NORMI-RI*NCRMI}/R))

[Ye]
[0}
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SFORM 4/7

PSTYX=TERM2*(DRDN*2.*(R1*RJ)/(R*R)
b ={(1.=2.,*XNU) *{ (RJ*NORMI~-RI *NORMJ ) /R) )
PSTYY®TERM2*(DRDN*((1.-2.*XNU)+
. 2.*(RJ/R)**2))
CALCULATE THE TERMS OF B AND G MATRICES
ROW I CORRESPONDS TO THE X DEFORMATIONS OF NODE I
ROW NNODES+I CORRESPONDS TO THE Y DEFORMATIONS OF NODE 1
COLUMN JJ CORRESPONDS TO THE X TERMS
COLUMN NNODES + JJ CORRESPONDS TO THE Y TERMS
FOR EXAMPLE,

T PXX*1 PXX*2 . . PXX*ORDER PXY*1 PXY*2 . . PXY*ORDER %
9 PYX*1 PYX*2 . . PYX*ORDER PYY*! PYY®*2 . . PYY*ORDER ¢
CALL SHAPE (ORDER,ETA(KK),SHAP)

DO 35 LL=1,0RDER
JJ=J*ORDER~-(ORDER~LL)
HS(I,JJ)=HS(1,JJ)+PSTXX*SHAP(LL)*JAC*WT (KK)
HS(I,4*NNODES+JJ)=HS(I,4*NNODES+3J)
* +PSTXY *SHAP(LL ) *JAC*WT(KK)
HS (4*NNODES+1,JJ )=HS (4 *NNODES+1,JJ)
* +PSTYX*SHAP(LL) *JAC*WT (KK)
HS (4 *NNODES+1, 4 *NNODES+JJ )=
* HS (4 *NNODES+I ,4*NNODES+JJ)
. +PSTYY*SHAP(LL) *JAC*WT (KK}
GS(1,3J)=GS(1,JJ)+USTXX*SHAP(LL)*JAC*WT (KK)
GS(1,3*NNODES+JJ )=GS(1,3*NNODES+JJ)
* +USTXY *SHAP(LL ) *JAC*WT (KK)
GS (4 *NNODES+1,JJ )=GS (4 *NNODES+I1,JJ)
* +USTYX*SHAP(LL ) *JAC*WT(KK)
GS (4*NNODES+1,3*NNODES+JJ )=
GS (4*NNODES+1, 3*NNODES+JJ)
* +USTYY*SHAP(LL) *JAC*WT (KK)
35 CONTINUE
50 CONTINUE
ELSE
IR BB AR SR IR B B R I I I I SR I R I I S A A R B AR AR
INTEGRAL 1S SINGULAR INSIDE THE ELEMENT
CALCUALTE HS AND GS MATRICES SEPARATELY BECAUSE
GS IS LOG(1/R) SINGULAR AND HS IS (1/R) SINGULAR
CALCULATE GS FIRST
* & & & & & @ * & & & & ¥ & @ ® & & ® & * FEN N KNS

SINGUL=NODE ( ISING)
X2X1=ELEM(J,3)-ELEM(J, 1)
Y2Y1=ELEM(J,4)-ELEM(J,2)
PLENG=SORT(X2X 1*X2X 1+Y2Y1*Y2Y1)
DO 350 KK=1,10




nooa

SFOPM 5/7

CALL SHAPE (ORDER,ETA2(KK),SHAP)

CALL JACOBIAN(J,ETA2(KK))

JAC2=JAC

ET=SINGUL~-(SINGUL+1.) *ETALN (KK)

CALL SHAPE(ORDER,ET,SHAPLN)

CALL JACOBIAN(J,ET)

JACLN=JAC

ET=SINGUL+(1.~-SINGUL)*ETALN (KK)

CALL SHAPE (ORDER,ET,SHAPLN2)

CALL JACOBIAN(J,ET)

JACLN2=JAC

ET=SINGUL~-{1.+SINGUL)*.5*(ETA2(KK)+1.)

CALL SHAPE{ORDER,ET,SHAP3)

CALL JACOBIAN(J,ET)

JAC3I=JAC

ET=SINGUL+(1.-SINGUL)*.5*(ETA2(KK)+1.)

CALL SHAPE (ORDER,ET,SHAP4)

CALL JACOBIAN(J,ET)

JAC4=JAC

DO 325 LL=1,0RDER
JJ=J *ORDER- (ORDER~LL)
TERM=(-1.)/(8.*PI*GE*(1.-XNU))
IP(L.EQ.4) TERM=~TERM
TERMX=(X2X1/PLENG)**2*TERM
TERMY=(Y2Y1/PLENG) **2*TERM
TERM3=(3.-4.*XNU)*dlog(ABS(PLENG*( 1. +SINGUL)/2.))

. *TERM
TERM4={3.-4.*XNU)*d10g4{ABS(FLENG*(SINGUL-1.}/2.))
. *TERM

TERM1=(3.-4.*XNU)*TERM
TERM2=(3.-4.*XNU) *TERM
GS(I,JJ)=GS(I,JJ)+
SHAP (LL) *TERMX *JAC2*WT2 (KK )~
SHAP3(LL)*TERM3*JAC3*(1.+SINGUL )*.5*WT2(KK )~
SHAP4(LL) *TERM4 *JAC4* (1. -SINGUL)*.5*WT2(KK)+
SHAPLN (LL)*TERM19JACLN*( 1. +SINGUL ) *WTLN (KX )+
SHAPLN2(LL) *TERM2*JACLN2*(1.~SINGUL ) *WTLN (KK)
GS(1,3*NNODES+JJ )=GS(1,3*NNODES+JJ )+
. SHAP(LL) *X2X 1*Y2Y1*JAC2*WT2 (KK) *TERM/PLENG **2
GS(4*NNODES+1,JJ)=GS (4 *NNODES+1,JJ )+
. SHAP(LL) *X2X1*Y2Y1*JAC2*WT2 (KK ) *TERM/PLENG**2
GS(4*NNODES+I, 3*NNODES+JJ )=
GS (4 *NNODES+1, 3*NNODES+JJ )+
SHAP(LL ) *TERMY*JAC2*WT2(KK)~-
SHAP3(LL) *TERM3*JAC3*(1.+SINGUL)*.5*WT2(KK)~-
SHAP4A(LL)*TERM4*JAC4*(1.-SINGUL)*.5*WT2(KK)+
SHAPLN (LL) *TERM1*JACLN*( 1. +SINGUL) *WTLN (KK ) +
SHAPLN2(LL)*TERM2*JACLN2*(1.-SINGUL)*WTLN(KK)
325 CONTINUE
350 CONTINUE

* & ¢ B @

* % % @ @ O

CALCULATE THE HS MATRIX
FOR SINGULAR PANELS PXX=PYY~0.
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SFORM 6/7
DO 450 KK=1,8
TERM=(1.-2.*XNU)/(4.*P1*(1.-XNU))
ET=(~1.-SINGUL) *ETAS (KK) +SINGUL
CALL JACOBIAN(J,ET)
JAC1=IAC
NORMI 1=NORM1
NORMJ 1 =NORMJ
IF(L.EQ.1.OR.L.EQ.3) THEN
NORMI 1=-NORMI 1
NORMJ 1==NORMJ 1
END IF
PXY 1=TERM* ( (X2X1/PLENG ) *NORMJ 1= (Y 2Y 1 /PLENG ) *NORMI 1)
PYX1=TERM® { (Y2Y1/PLENG) *NORMI 1= (X2X 1 /PLENG ) *NORMJ 1)
CALL SHAPE (ORDER,ET,SHAP)
ET=(1.-SINGUL) *ETAS (KK ) +SINGUL
CALL JACOBIAN(J,ET)
JAC2=JAC
NORMI2=NORMI
NORMJ 2 =NORMJ
IF(L.EQ. 1.0R.L.EQ.3) THEN
NORMI2=<~NORMI 2
NORMJ 2==NORMJ 2
END IF
PXY 2=TERM®*( (X2X1/PLENG ) *NORMJ2~ (Y2Y 1 /PLENG ) *NORMI2)
PYX2=TERM*( (Y2Y1/PLENG) *NORMI 2- (X2Y 1/PLENG ) *NORMJ2)
CALL SHAPE (ORDER,ET,SHAP2)
DO 425 LL=1,O0RDER
JJ =3 *ORDER~(ORDER-LL)
HS (1,4 *NNODES+JJ )=HS (1,4 *NNODES+JJ )~
SHAP(LL)*PXY 1*JAC1*(2./PLENG ) *WTS (KK )+
SHAP2(LL) *PXY2*JAC2*(2./PLENG) *WTS (KK )
HS (4 *NNODES+I,JJ )=HS (4 *NNODES+1,JJ ) -
SHAP(LL ) *PYX1*JAC1%(2./PLENG ) *WTS (KK )+
SHAP2(LL)*PYX2*JAC2*%( 2. /PLENG ) *WTS (KK )
CONT INUE
CONTINUE

C CALCULATE F(SINGULARITY) LOG TERMS AND ADD TO THE HS TERMS

C

TERM=(1,=2,%XNU)/(4.*PI*(1.-XNU))
CALL SHAPE (ORDER, SINGUL, SHAP3)
CALL JACOBIAN(J,SINGUL)
1IF(L.EQ.1.0OR.L.EQ.3) THEN
NORMI==NORMI
NORMJ = ~NORMJ
END IF
PXY=TERM* ( { X2X1/PLENG ) *NORMJ ~ (Y 2Y 1 /PLENG ) *NORMI )
PYX=TERM*( (Y2Y1/PLENG) *NORMI~- (X2X1/PLENG ) *NORMJ )
DO 475 LL=1,0RDER
JJ=J *ORDER= { CRDER~LL )
HS (1, 4*NNCDES+JJ )=HS (1,4 *NNODES+JJ )~
SHAP3 (LL) *PXY*JAC*(2./PLENG ) *dlog{ABS(~=1.-SINGUL))+
SHAP3(LL)*PXY*JAC*(2./PLENG)*dlog{ABS(1.-SINGUL))
HS (4 *NNODES+1,JJ ) =HS (4 *NNODES+1,JJ )=~
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475

1000 CONTINUE
RETURN
END

SFORM 7/7

SHAPI(LL)*PYX*JAC*(2./PLENG)*dlog(ABS(-1.-SINGUL) )+
SHAP3(LL ) *PYX*JAC*(2./PLENG)*dlog(ABS(1.-SINGUL))

CONTINUE
END IF
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SHAPE

THIS SUBROUTINE CALCULATES THE SHAPE PUNCTIONS
USING LAGRANGIAN POLYNOMIAL SHAPE FUNCTIONS

INPUT:
SORDR = ORDER OF SHAPE FUNCTION
TERM = LOCATION WHERE SHAPE FUNCTION IS TO BE CALCULATED

OUTPUT :
SH = SHAPE PUNCTION ARRAY

o000 0000

c.".."'ti"""t'tQ"""'tt".t"..ttit...tt.'tt"t't't't'itﬁ.t"..

SUBROUTINE SHAPE (SORDR, TERM,SH)
implicit real®*8 (a-h,o-2z)
COMMON/GEOMET/NNODES, NELEMS, ORDER, EPS, NORM1, NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(S),ELEM(360,4)
real®*8 SH(5),NORMI,NORMJ,JAC, NUMER, NODE
INTEGER ORDER, SORDR
C
C FOR CONSTANT FIT
(o
IF(SORDR.EQ. 1) THEN
SH(1)=1,
ELSE
C
C CALCULATE HIGHER ORDER SHAPE FUNCTIONS
C
O 60 I=1,SORDR
DENOM= 1,
NUMER=1.
DO 55 K=1,SORDR
IF(I1.NE.K) THEN
DENOM=(NODE (1 )-NODE(K) ) *DENOM
NUMER=(TERM~NODE (K ) ) *NUMER
END 1IF
S5 CONTINUE
SH(I)=NUMER/DENOM
60 CONTINUE
END IF
RETURN
END
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C

C

C SINFO

[of

C THIS SUBROUTINE READS IN THE INFORMATION NEEDED TO

C CALCULATE THE STRUCTURE MATRICES

C

C INPUT:

C GE = SHEAR MODULUS

C XNU = POISSON MODULUS

C

c'."."""'.'ﬁt"."""...'t"'..'.'.".'..Q"'t.""."""'t.'.'.
SUBROUTINE SINFO
implicit real*8 (a-h,o-z)
COMMON/STRUCT/GE , XNU,HS (1920, 1920),GS (1920, 1440),GSHAT(1920)

(o

[od

READ(5, 10) GE,XNU
10 FORMAT (2F10.4)

RETURN

END
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1
c

SOLVE

THIS SUBROUTINE SOLVES THE LINEAR SYSTEM OF EQUATIONS
BY THE GAUSS ELIMINATION METHOD PROVIDING FOR
INTERCHANGING ROWS WHEN ENCOUNTERING A ZERO DIAGONAL
COEFFICIENT

A: SYSTEM MATRIX

B: ORIGINALLY THE INDEPENDENT COEFFICIENTS (RHS)
AFTER SOLUTION IT CONTAINS THE VALUES OF
SYSTEM UNKNOWNS

N: ACTUAL NUMBER OF UNKNOWNS

D: DETERMINANT

I AAAAAL RS SRR 2 2 2R RS 222 F 2 R e R R N e P R R R R A A TS

SUBROUTINE SOLVE(A,B,D,N,NDIM)
implicit real*8 (a-h,o0-z)
REAL®*8 A(NDIM,NDIM),B(NDIM)
NisN-1
DO 100 K=1,N1
K1=K+1
C=A(K,K)
IF(ABS(C)~-0.00000140) 1,1,3
DO 7 J=K1,N

C TRY TO INTERCHANGE ROWS TO GET NON ZERO DIAGAONAL

C

C

IF{ABS(A(J,K))=0.00000140) 7,7,5
DO 6 L=K,N
C=A(K,L)
A(K,L)=A(J,L)
A{J,L)=C
C=B(K)
B(K)=B(J)
B(J )=C
C=A(K,K)
GO TO 3
CONTINUE
WRITE(6,2) K
PORMAT( ' *****SINGULARITY IN ROW',IS5)
D=0.
GO TO 300

C DIVIDE ROW BY DIAGONAL COEFFICIENT

C
3

4

of

C=A(K,K)

DO 4 J=K1,N
A(X,J)=A(K,J)/C
B(K})=B(X)/C

C ELIMTNATE UNKNOWN X(K) FROM ROW I

Cc
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SOLVE 2/2
DO 10 I=K1,N

C=A(I,K)
DO 9 J=K1,N
9 A(I,J)=A(I,J)=C*A(K,J)
10 B(I)=B(I)-C*B(K)
100 CONTINUE
C
C COMPUTE LAST UNKNOWN
c

IF (ABS(A(N,N))-0.000001d0) 101,101,102
101 WRITE(6,2) N
D=0.0
GO TO 300
102 B(N)=B(N)/A(N,N)
C
C APPLY BACKSUBSTITUTION TO COMPUTE REMAINING UNKNOWNS
c
103 DO 200 L=1,Nt1
K=N-L
Ki=K+1
DO 200 J=X1,N
200 B(K)=B(K)=-A(K,J)*B(J)
C
C COMPUTE VALUE OF DETERMINANT
C
D=1.
DO 250 I=1,N
250 D=D*A(I,I)
300 RETURN
END
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c

C Ssour

C

C THIS SUBROUTINE PRINTS OUT THE ELASTIC STRUCTURE MATRICES,

C HS, GS AND GSHAT

(o4

C".'".t'i..""..'t""t"'..'t.'t""""""'...'ttt""'.'.".'.'
SUBROUTINE SOUT
implicit real*8 (a-h,o-z)
COMMON/GEOMET/NNODES , NELEMS, ORDER, EPS, NORMI ,NORMJ, JAC, NODEC,
*NODPIN 1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/STRUCT/GE , XNU,HS (1920, 1920),GS (1920, 1440) ,GSHAT(1920)
real*8 NORMI,NORMJ,JAC,NODE
INTEGER ORDER

(o
C
WRITE(6,1)
1 FORMAT(//,22X,'*****STRUCTURAL MATRIX INFORMATION®®wew' //)
WRITE(6,2)

2 FORMAT(5X, ‘HS XX MATRIX',/)
DO 10 I=1,NNODES*4
WRITE(6,3) (HS(1,J),J=1,NNODES*3)
3 FORMAT(35(13(F6.4,3X),/))
10 CONTINUE
WRITE(6,11)
11 FORMAT(5X, '"HS XY MATRIX',/)
DO 13 I=1,NNODES*4
WRITE(6, 12) (HS(I,4*NNODES+J),J=1,NNODES*3)
12 FORMAT(35(13(F6.4,3X),/))
13 CONTINUE
WRITE(6,120)
120 FORMAT(5X, 'HS YX MATRIX',/)
DO 150 I=1,NNODES*4
WRITE(6,115) (HS(4*NNODES+1,J),J=1,NNODES*3)
115 FORMAT(35(13(F6.4,3X),/))
150 CONTINUE
WRITE(6,220)
220 FORMAT(5X, '"HS YY MATRIX',/)
DO 250 I=1,NNODES*4
WRITE(6,215) (HS(4*NNODES+1,4*NNODES+J),J=1,NNODES*3)
215 FORMAT(35(13(F6.4,3X),/))
250 CONTINUE
WRITE(6,14)
14 FORMAT(//,5X, 'GS MATRIX',/)
DO 20 I=1,NNODES*8
WRITE(6, 15) (GS(I1,J),J=1,NNODES*6)
15 FORMAT(70(13(F6.4,3X),/))
20 CONTINUE
WRITE(6,22)
22 FORMAT(//,5X, 'GSHAT MATRIX',/)
WRITE(6,23) (GSHAT(I),I=1,8*NNODES)

23 FORMAT(95(13(F7.4,3X),/))
RETURN

END
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OO0O0O00000

SOUTPUT

THIS SUBROUTINE OUTPUTS THE DEFORMATION MATRIX, U
NOTE THAT AFTER THE SOLVE, THE VECTOR GSHAT NOW CONTAINS THE
SOLUTION DEFORMATIONS

cQ't.'.."'.'....t""'..'"Q"'.t..'.'t't'."'tt.."'."t"."'.."'

SUBROUTINE SOUTPUT(ITER)

implicit real*8 (a-h,o~-2)

COMMON /GEOMET/NNODES , NELEMS , ORDER, EPS,NURMI,NORMJ,JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
COMMON/STRUCT/GE , XNU,HS (1920, 1920),GS (1920, 1440) ,GSHAT(1920)
real®*8 NORMI,NORMJ,JAC,NODE

INTEGER ORDER

WRITE(6,1) GE,XNU,NODPIN1,NODPIN2, ITER-1
FORMAT(//,22X, ' *****DEFORMATION MATRIX#**wes' /
*10X, 'SHEAR MODULUS = ',F10.4,5X, 'POISSON MODULUS = ',F10.4,/,
*10X, 'PINNED NODES ARE = ',2I13/,10X,'ITERATION = ',12,/)
WRITE(6,2)
FORMAT(//,5X,'U MATRIX',/)
DO 10 I=1,4*NNODES
WRITE(6,3) GSHAT(I),GSHAT(4*NNODES+1)
FORMAT(F20.8,2X,F20.8)
CONTINUE
RETURN
END
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C
C SURF
c
C THIS ROUTINE GENERATES X,Y LOCATIONS OF LEFT, CENTER AND
C RIGHT ENDS OF GEOMETRY PANELS FOR CYLINDER WITH OUTER AND
C INNER RADIUS
(o
C INPUT:
C NELEMS = NUMBER OF OUTSIDE PANELS
C THE SAME NUMBER OF PANELS IS GENERATED ON INNER
c SURFACE
C RADOUT = OUTER RADIUS
C RADIN = INNER RADIUS
(o
C OUTPUT:
C ELEM(I1,1'),ELEM(I1,2) = X,Y OF LEFT END OF ELEMENT J
C ELEM(I1,3),ELEM(I,4) = X,Y OF RIGHT END OF ELEMENT J
g'.t"...'t.'.""""'..t."'..'.
SUBROUTINE SURF
implicit real®*8 (a-h,o-2z)
COMMON/GECOMET/NNODES ,NELEMS, ORDER, EPS,NORMI,NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(S),ELEM(360,4)
integer order
‘ real*8 NODE,NORMI1,NORMJ,JAC
Cc
Cc
PI=3.14159265
READ(S,*) RADOUT, RADIN
1 FORMAT(2F10.4)
C
C GENERATE FLAT PANEL GEOMETRY
C
ANGLE=2.*P1 /NELEMS
PLENGO=2.*RADOUT*dTAN(ANGLE/2.)
PLENGI=2.*RADIN*dTAN(ANGLE/2.)
C
C CALCULATE X,Y LOCATIONS FOR OUTER SURFACE
Cc
DO 10 I=1,NELEMS
ANG=(I~1)*ANGLE+PI
RSIDE=SQRT( (PLENGO/2. ) **2+RADOUT**2)
ELEM(1,1)=RSIDE*dCOS(ANG=-(ANGLE/2.))
ELEM(1,2)=RSIDE*dSIN(ANG=(ANGLE/2.))
ELEM(1,3)=RSIDE*dCOS(ANG+(ANGLE/2.))
ELEM(I,4)=RSIDE*dSIN(ANG+(ANGLE/2.))
10 CONTINUE
C
C CALCULATE X,Y LOCATIONS FOR INNER SURFACE
C

DO 20 I=1,NELEMS

. ANG=(I-1)*ANGLE+PI
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20

RSIDE=SQRT( (PLENGI/2.)**2+RADIN**2)

ELEM(NELEMS+I, 1)=RSIDE*dCOS ( ANG~(ANGLE/2,))
ELEM(NELEMS+1,2)=RSIDE*dSIN (ANG-(ANGLE/2.))
ELEM(NELEMS+I,3 )=RSIDE*dCOS (ANG+(ANGLE/2.))
ELEM(NELEMS+1,4 )=RSIDE *dSIN (ANG+(ANGLE/2.))

CONTINUE
RETURN

END

104

SURF 2/2




c........ A 2222222222222 2222222222222 2222222222222 22X X2 J

VELOC

C
C
C
C THIS SUBROUTINE CALCULATES THE U AND V COMPONENTS OF THE
C PERTURBATION VELOCITY (UVEL,VVEL)

C

(o]

(2242222222222 2222222022222 222222222 R 222 2222202222l

SUBROUTINE VELOC

implicit real*8 (a-h,o-z)

COMMON/FLAGS/1IFLAG, PFLAG, ITER

COMMON /GEOMET/NNODES , NELEMS, ORDER, EPS, NORM1,NORMJ, JAC,NODEC,
*NODPIN1,NODPIN2,NODE(S5),ELEM(360,4)
COMMON/POSITION/X1(1080),YI(1080)

COMMON/FLOW/H (240,240),G(240,240),0(240),GHAT(240)

COMMON /POTEN/VINF ,ALPHA,V1 ,VJ,PINF,RHOINF,GAMMA,MINF2,NODEP
COMMON /VELOCIT/UVEL(240),VVEL(240) ,XFORC(480),YFORC(480),
*XOLD(480),YOLD(480)

REAL*8 SHAP(S),ETA{12),WT(12),SHP(5)

REAL*8 ETAS(8),WTS(8),SHP1(5),SHP2(5),SHP3(5)

REAL*8 NODE,JAC,JAC1,JAC2,NORMI,NORMJ,GAMMA,MINF2

INTEGER ORDER, PFLAG

REAL®*8 TERMQX(240,240),TERMQY(240,240),TERMPX(240,240),

* TERMPY(240,240)

(g

ETA AND WT ARE 12TH ORDER GAUSSIAN QUADRATRUE VALUES AND WEIGHTS

DATA ETA(1),ETA(2),ETA(3),ETA(4),ETA(5),ETA(6),ETA(7),
*ETA(8),ETA(9),ETA(10),ETA(11),ETA(12)/~-.98156063d0,-.904117264d0,
*-.769902674d0,~-.58731795d0,~. 3678314940, ~. 12523341d0,.1252334140,
*.367831494d0,.5873179540, . 7699026740, . 2041172640, .9815606340/

DATA WT(1),WT(2),WT(3),WT(4),WT(5),WT(6),WT(7),WT(B),WT(9],
*WT(10),WT(11),WT(12)/.047175340,.10693933d0,.1600783340,
*.203167434d0,.2334925440,.2491470540, .249147054d0, .2334925440,
*.2031674340,.160078334d0, .1069393340,.047175344d0/

ETAS AND WTS ARE 8TH ORDER GAUSSIAN VALUES AND WEIGHTS FOR
1/R SINGULAR INTEGRALS

o000 n

DATA ETAS(1),ETAS(2),ETAS(3),ETAS(4),ETAS(5),ETAS(6),ETAS(7),
*ETAS(8)/-.0032425040,.053490774d0,.177827334d0,.3507178840,
*.5458195240,.7334270840, .884983054d0, .9774543840/

DATA WTS(1),WTS(2),WTS(3),WTS(4),WPS(5),WTS(6),WTS(7),
*WTS(8)/-3.93063681d0,1.73740631d0, .85763454d0, .5383607740,
*,.35975759d0,.23726769d0, .14146228d0,.058747614d0/

DATA PI/3.14159265d0/

0

INITIALIZE MATRICES

DO 10 I=1,NNODES
UVEL(I)=0.0
VVEL(I)=0.0
DO 10 J=1,NNODES

TERMPX(I,J)=0.0
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TERMPY(1,J)=0.0 VELOC 2/6

TERMQX(I,J)=0.0
TERMQY (1,J)=0.0
10 CONTINUE

BEGIN LOOPS ON NODE I AND ELEMENT J
FOR EACH I ROW, PERFORM INTEGRATIONS OVER EACH ELEMENT J
AROUND THE STRUCTURE. FILL IN ONE ROW AT A TIME

OO0 O00

DO 1000 I=1,NNODES
DO 1000 J=1,NELEMS

DETERMINE IF THE INTEGRATION SHOULD BE SINGULAR
IE IS THE NODE I ON THE ELEMENT J?

ISING = 0 MEANS NODE IS NOT ON ELEMENT

ISING = 1 MEANS NODE IS FIRST NODE ON ELEMENT J
ISING = 2 MEANS NODE 1S SECOND NODE ON ELEMENT J
ISING = 3 ETC

OcOoOaoono0n

ISING=0
DO 20 L=1,0RDER
NODES=J *ORDER~- ( ORDER-L )
IF(I.EQ.NODES) ISING=L
20 CONTINUE
IF(ISING.EQ.0) THEN
* ® & &« & * & & * & & & & T & & & & * & ¢ & ® T * ® * & @ @
THE INTEGRATION IS NOT SINGULAR
PERFORM 12TH ORDER GAUSSIAN QUADRATURE

* ® & @ @ & & * * & & * & O F F FFRE TSR LSS NN EE S E S

DO 50 K=1,12

00Oon

CALCULATE THE X AND Y COORDINATES OF THE QUADRATURE POINT
AND CALCULATE DISTANCE FROM NODE I TO QUAD POINT

anonon

ETAA=-1,

ETAC=1,

ETAQ=ETA(K )
SHAP(1)=(ETAQ-ETAC)/(ETAA-ETAC)

SHAP (2 )=(ETAQ-ETAA) /(ETAC-ETAA)
X=SHAP(1)*ELEM(J, 1)+SHAP(2 )*ELEM(J, 3)
Y=SHAP(1)*ELEM(J,2)+SHAP(2) *ELEM(J,4)
RI=XI(I)-X

RI=YI(I)-Y

R=SQRT(RI*RI+RJ*RJ)

[p]

CALCULATE DQ*/DX,DG*/DY,DPH1*/DX,DPHI*/DY

CALL JACOBIAN(J,ETA(K))

D=RI*(NORMI )+RJ*(NORMJ)

DPSTDX=-RI/(R*R)

DPSTDY=-RJ/(R*R)

DQSTDX=( (R*R*(NORMI)-D*2.*RI)/(R*R*R*R))
DQSTDY=( (R*R*(NORMJ )-D*2.*RJ)/(R*R*R*R})
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. VELOC 3/6

CALCULATE DH/D AND DG/D MATRIX TERMS
ROW CORRESPONDS TO NODE I
COLUMN CORRESPONDS TO GLOBAL NUMBER OF ELEMENT NODES
I.E NODE 1,2,3 ON ELEMENT 1 ARE 1,2,3
NODE 1,2,3 ON ELEMENT 2 ARE 4,5,6
NODE 1,2,3 ON ELEMENT 3 ARE 7,8,9

OO0 000

CALL SHAPE (ORDER,ETA(K),SHAP)
DO 35 L=1,0RDER
JJ=J*ORDER- (ORDER-L )
TERMOX(I,JJ )=TERMQX(I,JJ)+
. SHAP(L)*DQSTDX*JAC*WT(K)/(2.*PI)
TERMPX(I,JJ )=TERMPX(1,JJ)+
* SHAP(L ) *DPSTDX*JAC*WT({K)/(2.*P1)
TERMQY(I,JJ )=TERMQY(I,JJ)+
. SHAP(L )*DQSTDY*JAC*WT(K)/(2.*PI)
TERMPY (1,JJ)=TERMPY(I,JJ)+
. SHAP(L ) *DPSTDY*JAC*WT(K)/(2.*PI)
35 CONTINUE
50 CONT INUE
ELSE

* & & & & & W F ®F ® S FE R ® N NP EF TN TR R TR E O

THE INTEGRAL IS SINGULAR ON ELEMENT J

THE DPHI*/D TERMS ARE CALCULATED SEPARATELY FROM THE DQ*/ D TERMS
BECAUSE DPHI*/D 1S 1/R SINGULAR AND DQ*/D 1S 1/R*R SINGULAR

CALCULATE DQ*/D TERMS FOR SINGULAR ELEMENT

BREAK UP INTERVAL INTO SINGULAR AND NON-SINGULAR PART
SINGULAR PART CENTERED AROUND SINGULARITY

START=START OF SINGULAR PORTION

END=END OF SINGULAR PORTION

0OO0ONON0ONOOOOO0O0O0

SING=NODE (ISING)

DELTA=( 1. -ABS{NODE (ISING)))
START=NQDE (ISING)-DELTA
END=NODE ( ISING ) +DELTA

SuM=0.0
ETAA==-1,
ETAC=1.
C
C IF START OF SINGULAR INTEGRAL 1S -1 AND END IS 1 THEN
C THE ENTIRE ELEMENT 1S IN THE SINGULAR INTERVAL
C SKIP THE NON-SINGULAR CALCULATIONS
C
IF(START.EQ.-1.d0.AND.END.EQ. 1.d0) GO TO 300
DO 250 X=1,12
C
C START OF SINGULAR INTERVAL IS -1, END IS END
C THERFORE NON-SINGULAR PART IS FROM END TO 1
C
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IF(START.EQ.~-1.d0) THEN

ET=(ETA(K)+1.)*(1.-END)/2.+END

CALL SHAPE (ORDER,ET, SHP)

ETAQ=ET

SHAP(1)=(ETAQ-ETAC)/(ETAA~ETAC)

SHAP(2)=(ETAQ~ETAA)/(ETAC-ETAA)

X=SHAP(1)*ELEM(J, 1)+SHAP(2 )*ELEM(J, 3)

Y=SHAP(1)*ELEM(J,2)+SHAP(2)*ELEM(J,4)

RI=XI(1)=-X

RI=YI(I)-Y

R=SQRT(RI*RI+RJ*RJ)

CALL JACOBIAN(J,ET)

DQSTDX=(NORMI)/(R*R)

DOSTDY=(NORMJ ) /{R*R)

DO 100 L=1,0RDER
JJJ=J *ORDER=- (ORDER~-L)
TERMQOX(I,JJJ)=TERMQX(1,JJJ)+

* SHP (L) *DQSTDX*JAC*.5%( 1. -END)*WT(K)/(2.*P1)
TERMQY (1,JJJ )=TERMQY (1,JJJ)+
M SHP (L) *DOSTDY *JAC*.5*( 1. -END) *WT (K )/(2.*PI)
100 CONT INUE
ELSE

END OF SINGULAR INTERVAL IS 1
THEREFORE NON-SINGULAR PART IS FROM -1 TO START

naOnn

ET=(ETA(K)+1.)*(START+1.)/2.~1.
CALL SHAPE (ORDER,ET,SHP)
ETAQ=ET
SHAP(1)=(ETAQ-ETAC)/(ETAA~ETAC)
SHAP (2 )=(ETAQ-ETAA )/ (ETAC~ETAA)
X=SHAP(1)*ELEM(J, 1)+SHAP(2)*ELEM(J, 3)
Y=SHAP(1) *ELEM(J,2)+SHAP(2)*ELEM(J, 4)
RI=XI(I)-X
RI=YI(I)-Y
R=SQRT (RI*RI+RJ*RJ)
CALL JACOBIAN(J,ET)
DUSTDX=(NORMI )/(R*R)
DQSTDY=(NORMJ ) / (R*R)
DO 20U L=1,0RDER
JJJ=J *ORDER~ (ORDER-L)
TERMQX(1,JJJ )=TERMQX(I,JJJ)+
. SHP (L) *DQSTDX*JAC* . 5% (START+1.) *WT(X)/(2.*PI)
TERMQY (1,JJJ )=TERMQY (I,JJJ)+
. SHP (L) *DQSTDY *JAC* .5* (START+1.) *WT(K)/(2.*PI)
200 CONTINUE
END IF
250 CONT INUE
c
C NOW CALCULATE SINGULAR INTEGRAL
c
300 CONTINUE
DO 400 K=1,12
X2X1=ELEM(J, 3)-ELEM(J, 1)
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Y2Y1=ELEM(J,4)-ELEM(J,2)
PLENG=SQRT(X2X 1*X2X 1+Y2Y1*Y2Y 1)
ET=.5%(END-START)*(ETA(K)+1.)+START
CALL JACOBIAN(J,ET)

DQSTDX=NORM1*8./(PLENG*PLENG*(END=-START) )
DQSTDY =NORMJ *8. / ( PLENG *PLENG* (END-START) }

CALL SHAPE(ORDER,ET,SHP)

DO 400 L=1,0RDER
JJJ=J*ORDER~(ORDER-L)
TERMQX(1,JJJ)=TERMQX(I,JJJ)+

* SHP(L ) *DQSTDX*JAC*WT (K)/(ETA(K)**2*(2.*PI))
TERMQY(I,JJJ)=TERMQY(1,JJJ)+
* SHP(L) *DLSTDY*JAC*WT(K)/(ETA(K)**2*(2.*PI1))
400 CONTINUE

C
C CALCULATE SUMMATION OF WT/ETA2
DO 500 K=1,12
SUM=SUM+WT (K)/ETA(K)**2
500 CONTINUE
C
C CALCULATE F(0) AND ADD =-(SUM+2)F(0) TO TERMS
C
ET=.5*(END-START)+START
CALL JACOBIAN(J,ET)
DQSTDX=NORMI*8./(PLENG*PLENG*(END-START))
DQSTDY =NORMJ *8./( PLENG *PLENG *(END=START) )
CALL SHAPE(ORDER,ET,SHP)
DO 600 L=1,0RDER
JJJI=J *ORCER~(ORDER~L)
TERMQX(I,JJJ )=TERMQX(I,JJJ)~

* (SUM+2.) *SHP(L)*DQSTDX*JAC/(2.*P1)
TERMQY (I1,JJJ)=TERMQY(I,JJ3J)-
* (SUM+2.) *SHP (L) *DQSTDY*JAC/(2.*P1)
600 CONTINUE

C'ti"ii".'tt.tt"..."'t'.'t.'

< CALCULATE DPHI*/D TERMS FOR THE SINGULAR ELEMENT

C
X2X 1=ELEM({(J,3)-ELEM(J, )
Y2Y1=ELEM(J,4)~ELEM(J,2)
PLENG=SCRT(X2X1*X2X 1+4Y2Y1*Y2Y 1)
PX=X2X1*(2./PLENG**2)*(1./(2.*P1))
PY=Y2Y1*(2./PLENG**2)*(1./(2.*P1))

C

C PERFORM 8TH ORDER SUMMATION

C

DO 740 K=1,8
ET=(~1.~-SING)*ETAS(K)+SING
CALL JACOBIAN(J,ET)

JAC 1=JAC

CALL SHAFE(ORDER,ET,SHP1)
ET=(1.-SING)*ETAS (K} +SING
CALL JACOBIAN(J,ET)
JAC2=JAC

CALL SHAPE(ORDER,ET, SHP2)
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DO 730 L=1,0RDER
JJJ=J*ORDER~-(ORDER~-L)
TERMPX(1,JJJ )=TERMPX(I1,JJ3J)~

o SHP1(L)*PX*JACI*WTS (K)+SHP2 (L) *PX*JAC2*WTS (K)
TERMPY(I,JJJ)=TERMPY(I1,JJJ)~
b SHP1(L)*PY*JAC1*WTS (K)+S5HP2(L) *PY*JAC2*WTS (K)
730 CONTINUE
740 CONT INUE

Cc
C CALCULATE F(SINGULARITY) LOG TERMS AND ADD TO THE SUMMATION
C
CALL SHAPE (ORDER, SING, SHP3)
CALL JACOBIAN(J,SING)
DO 750 L=1,0RDER
JJJ=J *ORDER- (ORDER~L)
TERMPX(1,JJJ)=TERMPX(I,JJJ)~
SHP3 (L) *PX*JAC*dlog(ABS(~=1.~SING) )+
SHP3(L)*PX*JAC*dlog(ABS(1.=-SING))
TERMPY(1,JJJ)=TERMPY(1,J3J)~
SHP3(L)*PY*JAC*dlog(ABS(~-1.~SING) )+

. SHP3 (L) *PY*JAC*dlog(ABS(1.-SING))
750 CONTINUE
END IF
1000 CONTINUE
Cc
C IF PRINT FLAG = 1 PRINT OUT TERM MATRICES
C
IF(PFLAG.EY. 1.OR.PFLAG.EQ. 3) CALL VELOUT(TERMQX,
. TERMQY, TERMPX, TERMPY)
C
C CALCULATE U AND V PERTURBATION VELOCITIES
C

DO 1200 I=1,NNODES
DO 1200 J=1,NNODES
UVEL(1 )=UVEL(I)+{(-TERMQX(I1,J)*GHAT(J)

* +TERMPX(I1,J)*Q(J))
VVEL(I)=VVEL(I)+(-TERMQY(I,J)*GHAT(J)
* +TERMPY(I,J)*Q(J})

1200 CONTINUE
DO 1250 I=1,NNODES
UVEL(I)=UVEL(I)/.5
VVEL(I)=VVEL(I)/.5
1250 CONTINUE
do 1300 1=1,nnodec
uvel{i)=svi-uvel(i)
vvel(i)=vji~-vvel(i)
1300 continue
RETURN
END
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VELOUT

THIS SUBROUTINE PRINTS THE INTERMEDIATE PARTS OF THE
VELOCITY MATRICES FOR CHECKOUT

NOOOO0O D0

2 Y 2 22X X222 X222 2222 RS2 2222 AR 202 2R Rl ddld)

SUBROUTINE VELOUT(TERMQX, TERMQY, TERMPX, TERMPY )

implicit real®*8 (a-h,o0-z)

COMMON/GEOMET /NNODES , NELEMS, ORDER, EPS, NORMI ,NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)

real®*8 TERMQX(240,240),TERMQY(240,240),TERMPX(240,240),
*TERMPY (240,240)

real*8 NORMI,NORMJ,JAC,NODE

INTEGER ORDER

WRITE(6, 1)
| FORMAT(//,5X, 'TERMQX MATRIX',/)
DO 10 I=1,NNODES
WRITE(6,5) (TERMQX(I,J),J=1,NNODES)
FORMAT( /13(8(F10.4,5X),/))
10 CONTINUE
WRITE(6,11)
11 FORMAT(//,5X, ‘TERMQY MATRIX',/)
DO 20 I=1,NNODES
WRITE (6, 15) (TERMQY(I,J),J=1,NKODES)
15 FORMAT(/13(8(F10.4,5X),/))
20 CONTINUE
WRITE(6,21)
21 FORMAT(//,5X, "TERMPX MATRIX',/)
DO 30 I=1,NNODES
WRITE(6,25) (TERMPX(I,J),J=1,NNODES)
25 FORMAT(/13(8(F10.4,5X),/))
30 CONTINUE
WRITE(6,31)
N FORMAT(//,5X, 'TERMPY MATRIX',/)
DO 40 I=1,NNODES
WRITE(6,35) (TERMPY(I,J),J=1,NNODES)

35 FORMAT( /13(B(F10.4,5X},/))
40  CONTINUE

RETURN

END
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Wei Residual

The method of weighted residuals may be defined in the following manner. Begin with the problem
definition;

L(ug) = b in domain C1)
with boundary conditions

S(ug) = s on boundary 'y C2

G(uq) = g on boundary I'p

where ug is the exact solution to the problem. The approximation may be made so that

Ug = U = 2 aka + 4, (C3)
k=1 .

where ay are undctermined coefficients and Ny are lincarly indcpendent functions.  Substituting the

approximation into Equations C1 and C2:

Lw-b=#0=R
S(u) -s # 0=R, (C4)
G(u) -g=0=R,

where R, Ry and Ry are the residuals, or the errors. The purpose of the various numerical methods

techniques is to make all the errors as small as possible over the domain and boundary. Onc way of doing
this is with the weighted residual method.

Take a function w, such that

w= £ b (©s)
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The error can be distributed throughout domain Q by multiplying the error by the function w which is

called a weighting function.

fQRwdQ =0 €6

Because the b terms are arbitrary, the key is to choose the function yj so that

S Ryd0 =0 €7
Shape (Interpolation) Functigns

The value of a function u may be dcfined in terms of its value at known points (uy) and shape, or

interpolation, functions (Ny) such that;
um = NyMu; + NoMuy + ... + Ne(Wuy (€8}
J

uy \
= [Mo M@ N ]

!

k is the order of the function such as 1st (constant), 2nd (lincar), 3rd (parbolic), 4th, ctc. The points at
which the value of u is defined are called the nodal points, or nodes.

Lagrangian polynomial shape functions were used in the development of this thesis are may be
calculated by:

(Dl(n)___ (n_nl) e (n—ni-l) (T\—Tlm) PR (T]—T]k) (Cg)

M=) ... M=) Mi= M) ... (M= M)

The variable 11 is an clemental coordinate. M varics from -1 at the left end to +1 at the right end of the
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element. The nodes are therefore distributed throughout the element with values from -1 to 1. For

example, a third order function may have nodes defined at -1, 0, +1.

Jacobians

A Jacobian allows the transformation from the integral about the boundary (dI') to the integral along

the element surface (dn). For a two-dimensional problem the Jacobian is defined as;

- VBT BT -%
Thercfore,
dr = {J| dn (C11)

In order to calculate the Jacobian, x and y must be expressed in terms of the variable 1. For a flat clement
where (xy, y;) are the coordinated for the left-end of the clement and (x,,y5) are the coordinates for the

right-end, x and y may be expressed by shape functions;

X = Nl Xl + N2 X2 y = Nl yl + NZ Y2 (CIZ)
and
ox a(D, ad)z ay a@l 8(132
= X + —_— i + — C13
3 o5 N Y 2 an - am Y1 P y2 (C13)
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